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Preface

Emerging cloud applications like machine learning, artificial intelligence (Al), deep
neural networks, and big data analytics have created the need for more powerful
data centers that can process huge amounts of data without consuming excessive
amounts of power. To face these challenges, data center operators have to adopt
novel architectures with specialized high-performance energy-efficient computing
systems, such as hardware accelerators, that can process the increasing amount of
data in a more energy-efficient way. To this end, a new era has emerged; the era of
heterogeneous distributed computing systems that consist of contemporary
general-purpose processors (CPUs), general-purpose graphic processing units
(GP-GPUs), and field-programmable gate arrays (FPGAs or ACAP Adaptive
Compute Acceleration Platform). The utilization of several heterogeneous archi-
tectures poses several challenges in the domain of efficient resource utilization,
efficient scheduling, and resource management.

In this book, we have collected the most promising and the most recent research
activities in this emerging domain of heterogeneous computing that is based on the
efficient utilization of hardware accelerators (i.e., FPGAs). The book contains 13
system-level architectures that show how to efficiently utilize hardware accelerators
in the data centers to face emerging cloud applications. The proposed architectures
tackle several challenges such as the energy efficiency of hardware accelerators in
data centers, the resource utilization and management, and the programmability of
heterogeneous infrastructure based on the hardware accelerators. We hope this book
serves as a reference book for any researcher, engineer, and academic works on the
exciting new area of heterogeneous computing with accelerators.

Athens, Greece Christoforos Kachris
April 2018
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Chapter 1 ®)
Introduction Check for

Christoforos Kachris, Babak Falsafi and Dimitrios Soudris

1.1 Introduction

Emerging applications like cloud computing, machine learning, Al and big data
analytics require powerful systems that can process large amounts of data without
consuming high power. Furthermore, these emerging applications require fast time-
to-market and reduced development times. To address the large processing require-
ments of emerging applications, novel architectures are required to be adopted by
the data center vendors and the cloud computing providers.

Relying on Moore’s law, CPU technologies have scaled in recent years through
packing an increasing number of transistors on chip, leading to higher performance.
However, on-chip clock frequencies were unable to follow this upward trend due to
strict power-budget constraints. Thus, a few years ago, a paradigm shift to multicore
processors was adopted as an alternative solution for overcoming the problem. With
multicore processors, we could increase server performance without increasing their
clock frequency. Unfortunately, this solution was also found not to scale well in the
longer term. The performance gains achieved by adding more cores inside a CPU
come at the cost of various, rapidly scaling complexities: inter-core communication,
memory coherency and, most importantly, power consumption [1].

In the early technology nodes, going from one node to the next allowed for a
nearly doubling of the transistor frequency, and, by reducing the voltage, power
density remained nearly constant. With the end of Dennard’s scaling, going from
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one node to the next still increases the density of transistors, but their maximum
frequency is roughly the same and the voltage does not decrease accordingly. As
a result, the power density increases now with every new technology node. The
biggest challenge therefore now consists of reducing power consumption and energy
dissipation per mm?.

Therefore, the failure of Dennard’s scaling, to which the shift to multicore chips
is partially a response, may soon limit multicore scaling just as single-core scaling
has been curtailed [2]. This issue has been identified in the literature as the dark
silicon era in which some of the areas in the chip are kept powered down in order to
comply with thermal constraints [3]. One way to address this problem is through the
utilization of hardware accelerators. Hardware accelerators can be used to offload
the processor, increase the total throughput and reduce the energy consumption.

1.2 The Era of Accelerators in the Data Centers

As the requirements for processing power of the data centers continue to increase
rapidly, higher performance computing systems are required to sustain the increased
communication bandwidth demand within the data center. Current server processors
cannot affordable satisfy the required computational demand of emerging application
without consuming excessive power. Hardware accelerators provide a viable solution
offering high throughput, reduced latency and higher energy efficiency compared to
current servers based on commodity processors.

This book presents the most recent and promising solutions that have been pre-
sented in the area of the computing hardware accelerators in heterogeneous data cen-
ters. Hardware accelerator for data centers is an interdisciplinary topic for all the com-
munities that are active in the domain of computer architectures, high-performance
computing, data center design and cloud computing.

Hardware accelerators are mainly used in embedded systems to offload the pro-
cessors for several tasks like compression, encryption, etc. and to provide higher
performance and lower energy consumption. Current data centers need to embrace
new technologies in order to face the increased network traffic due to emerging appli-
cations like cloud computing. Hardware accelerators based on reconfigurable logic
(i.e. FPGAs) can provide higher throughput and better energy efficiency.

Hardware accelerator in data centers is an emerging topic that has recently gained
attention by major data center and cloud computing vendors. The recent purchase of
Altera (a major vendor of FPGA-based accelerators) by Intel, and the collaboration
between IBM and Xilinx shows that soon the hardware accelerators will penetrate
the hyperscale data center in order to provide higher performance and higher energy
efficiency. This book aims to provide an overview of the architectures, programming
frameworks and hardware accelerators for typical cloud computing applications in
data centers.

The following section gives an overview of the main chapters that are presented
in this book.



1 Introduction 3

1.3 Book Chapters

Chapter 2 presents an integrated infrastructure required to support the deployment
of FPGAs at a large scale in a data center, developed by University of Toronto. This
platform considers FPGAs to be peers to the CPU-based servers rather than using
them as accelerator slaves, which is the more common view. The goal is to enable the
allocation and use of the FPGAs as computing resources in the same way that current
servers are provisioned in a data centre. Their approach is to build on the existing
knowledge and experience with provisioning software-based processing elements in
the data centre and adapting the current infrastructure to the differences that FPGAs
bring. This incurs minimal disruption and adjustment to how systems are currently
being deployed.

Chapter 3 presents the dReDBox (disaggregated Recursive Data center in a Box)
project. dReDBox addresses the problem of fixed resource proportionality in next-
generation, low-power data centers by proposing a paradigm shift towards finer
resource allocation granularity, where the unit is the function block rather than the
mainboard tray. This introduces various challenges at the system design level, requir-
ing elastic hardware architectures, efficient software support and management, and
programmable interconnect. Memory and hardware accelerators can be dynamically
assigned to processing units to boost application performance, while high-speed,
low-latency electrical and optical interconnect is a prerequisite for realizing the con-
cept of data center disaggregation. This chapter presents the dReDBox hardware
architecture and discusses design aspects of the software infrastructure for resource
allocation and management. Furthermore, initial simulation and evaluation results
for accessing remote, disaggregated memory are presented, employing benchmarks
from the Splash-3 and the CloudSuite benchmark suites.

Chapter 4 presents the OPERA projects that aims bring innovative solutions to
increase the energy efficiency of cloud infrastructures, by leveraging on modular,
high-density, heterogeneous and low-power computing systems, spanning data center
servers and remote CPS. The seamless integration of Cyber-Physical Systems (CPS)
and cloud infrastructures allows the effective processing of the huge amount of data
collected by smart embedded systems, towards the creation of new services for the
end users. However, trying to continuously increase data center capabilities comes
at the cost of an increased energy consumption. The effectiveness of the proposed
solutions in OPERA is demonstrated with key scenarios: a road traffic monitoring
application, the deployment of a virtual desktop infrastructure and the deployment
of a compact data center on a truck.

Chapter 5 presents a novel framework, called SPynq, for the efficient mapping
and acceleration of Spark applications on heterogeneous systems. The Spynq frame-
work has been demonstrated in all-programmable MPSoC-based platforms, such as
Zynq and heterogeneous systems with FPGAs attached to PCle interfaces. Spark
has been mapped to the Xilinx Pynq platform, and the proposed framework allows
the seamless utilization of the programmable logic for the hardware acceleration of
computational intensive machine learning kernels. The required libraries have also
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been developed that hide the accelerator’s details to minimize the design effort to
utilize the accelerators.

A cluster of four worker nodes based on the all-programmable MPSoCs has been
implemented, and the proposed platform is evaluated in two typical machine learning
applications based on logistic regression and k-means. Both the logistic regression
and the k-means kernels have been developed as accelerators and incorporated to
the Spark. The developed system is compared to a high-performance Xeon server
that is typically used in cloud computing. The performance evaluation shows that the
heterogeneous accelerator-based MPSoC can achieve up to 2.5x system speedup
compared with a Xeon system and 23 x better energy efficiency. For embedded
application, the proposed system can achieve up to 36 x speedup compared to the
software only implementation on low-power embedded processors and 29 x lower
energy consumption.

Chapter 6 presents the Modular Microserver Data centre (M2DC) project that
targets the development of a new class of energy-efficient TCO-optimized appli-
ances with built-in efficiency and dependability enhancements. The appliances are
easy to integrate with a broad ecosystem of management software and fully software
defined to enable optimization for a variety of future demanding applications in a
cost-effective way. The highly flexible M2DC server platform enables customization
and smooth adaptation to various types of applications, while advanced management
strategies and system efficiency enhancements (SEE) are used to improve energy effi-
ciency, performance, security and reliability. Data center capable abstraction of the
underlying heterogeneity of the server is provided by an OpenStack-based middle-
ware.

Chapter 7 presents the TANGO project (Transparent heterogeneous hardware
Architecture deployment for eNergy Gain in Operation (TANGO)). TANGO project’s
goal is to characterize factors which affect power consumption in software devel-
opment and operation for Heterogeneous Parallel Hardware (HPA) environments.
Its main contribution is the combination of requirements engineering and design
modeling for self-adaptive software systems, with power consumption awareness in
relation to these environments. The energy efficiency and application quality factors
are integrated in the application lifecycle (design, implementation and operation).
To support this, the key novelty of the project is a reference architecture and its
implementation. Moreover, a programming model with built-in support for various
hardware architectures including heterogeneous clusters, heterogeneous chips and
programmable logic devices is provided. This leads to a new cross-layer program-
ming approach for heterogeneous parallel hardware architectures featuring software
and hardware modelings.

Chapter 8 investigates how programmable resources can be integrated into the
cloud and edge infrastructure. In order to achieve this goal, the programmable cloud
platform has been designed and implemented. This is a hardware/software platform
that allows for the seamless integration of a programmable logic device into the cloud
and edge infrastructure and the deployment of tasks on it over OpenStack, the de
facto open-source software for cloud environments. The presented system is based
on an FPGA SoC, a device that combines both CPUs and programmable fabric, thus
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allowing us to optimize the division of labor within the device. The programmable
cloud platform includes both software and hardware to allow an FGPA SoC to be
integrated seamlessly with the OpenStack worker and controller, and provides an
environment where hardware-based user tasks can be deployed. For the evaluation,
an h264 decoder is used as an HW task to evaluate the performance of our system in
two ways. First, to verify that the SW stack does not impede the HW by causing too
much overhead and second, to indeed show that the FPGA can accelerate a common
task such as video decoding while been house in a relatively cheap, modest in size
programmable device.

Chapter 9 presents the cloud lighting architecture that aims to use of techniques to
address the problems emerging from the confluence of issues in the emerging cloud:
rising complexity and energy costs, problems of management and efficiency of use,
the need to efficiently deploy services to a growing community of non-specialist
users and the need to facilitate solutions based on heterogeneous components. This
approach attempts to address several issues like energy efficiency, improved accessi-
bility to cloud and support of heterogeneity in the data centers. The CloudLightning
architecture is a hierarchical organization of physical infrastructure but unlike tradi-
tional organizations it makes use of a resource management framework that is log-
ically hierarchical. The bottom layer of this framework hierarchy consists of many
resource managers. These managers are autonomous and, in contrast to traditional
systems, each manages a relatively small number of physical resources.

Chapter 10 presents the TULIPP platform for the efficient utilization of FPGA
resources in the cloud. TULIPP consists of a hardware system, supportive develop-
ment utilities and a real-time operating system (RTOS). Chained platforms provide
scalability and higher processing power. The project develops and provides a ref-
erence hardware architecture—a scalable low-power board, a low-power operating
system and image processing libraries and a productivity-enhancing toolchain. The
project is use-case driven, providing real-time low-power demonstrators of a medical
image processing application, automotive-embedded systems for driver assistance
(ADAS) and applications for Unmanned Aerial Vehicles (UAVs). The close connec-
tion to its setup ecosystem and standardization organizations will allow the TULIPP
project to propose new standards derived from its reference platform and handbook
to the industry.

Chapter 11 presents the ECOSCALE architecture. ECOSCALE proposes a scal-
able programming environment and architecture, aiming to substantially reduce
energy consumption as well as data traffic and latency in data centers and HPC.
Furthermore, ECOSCALE introduces a novel heterogeneous energy-efficient hier-
archical architecture, as well as a hybrid many-core+OpenCL programming environ-
ment and runtime system. The ECOSCALE approach is hierarchical and is expected
to scale well by partitioning the physical system into multiple independent Work-
ers. Workers are interconnected in a tree-like fashion and define a contiguous global
address space that can be viewed either as a set of partitions in a Partitioned Global
Address Space (PGAS) or as a set of nodes hierarchically interconnected via an MPI-
like protocol. To further increase energy efficiency, as well as to provide resilience, the
workers employ reconfigurable accelerators mapped onto the virtual address space
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by utilizing a dual-stage system memory management unit with coherent mem-
ory access. The architecture supports shared partitioned reconfigurable resources
accessed by any worker in a PGAS partition, as well as automated hardware synthe-
sis of these resources from an OpenCL-based programming model.

Chapter 12 presents the DOLPHIN project that proposes an approach towards
optimizing the energy consumption of federated data centers by means of continu-
ous resources monitoring and by exploiting flexible SLA renegotiation, coupled with
the operation of predictive, multilayered optimization components. Such energy con-
sumption management should be subject to limitations of variable elasticity such as
the balancing needs of the smart grid, the service-level agreements (SLAs) signed
between the cloud services providers and their customers, the actual computational
capacity of the data centers and the needs of the data center owners for maximizing
profit through service provisioning.

Chapter 13 exploits the increased variability within CPUs and memories manu-
factured in advanced nanometer nodes that give rise to another type of heterogeneity,
the intrinsic hardware heterogeneity which differs from the functional heterogeneity,
which is discussed in the previous chapters. In particular, the aggressive miniaturiza-
tion of transistors led to worsening of the static and temporal variations of transistor
parameters, resulting eventually to large variations in the performance and energy
efficiency of the manufactured chips. Such increased variability causes otherwise-
identical nanoscale circuits to exhibit different performance or power consumption
behaviors, even though they are designed using the same processes and architectures
and manufactured using the same exact production lines. The UniServer approach
discussed in Chap. 13 attempts to quantify the intrinsic variability within the CPUs
and memories of commodity servers, and reveals the true capabilities of each core
and memory through unique automated online and offline characterization processes.
The revealed capabilities and new operating points or cores and memories that may
differ substantially from the ones currently adopted by manufactures are then being
exploited by an enhanced error-resilient software stack for improving the energy effi-
ciency, while maintaining high levels of system availability. The UniServer approach
introduces innovations across all layers of the hardware and system software stacks;
from firmware to hypervisor, up to the OpenStack resource manager targeting deploy-
ments at the emerging edge or classical cloud data centres.
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Chapter 2 ®)
Building the Infrastructure for Deploying | <o

FPGAsSs in the Cloud

Naif Tarafdar, Thomas Lin, Daniel Ly-Ma, Daniel Rozhko,
Alberto Leon-Garcia and Paul Chow

2.1 Introduction

Two of the most significant challenges with cloud computing are performance and
power. While performance is always a consideration, the scale of data centres makes
power a particularly significant factor. To address these challenges, the computing
world has begun to use accelerators, principally GPUs to this point. The most com-
mon configuration for an accelerator is as a slave to a host processor, meaning that
the host processor controls how the accelerator is used. In our approach, we consider
all computing devices to be peers, which means that there is no requirement for any
host to control an accelerator as a slave. Any computing device can interact with any
other computing device on an equal basis.

In a heterogeneous computing world, starting with the peer model makes it easier
to work with well-known and existing parallel programming models that were mostly
developed when all processors were homogeneous. We feel that it is important to
introduce heterogeneity starting from a point that is familiar to application developers
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today. We do this by decoupling the application development from the absolute need
to know what type of device architecture will be used to do the computation. With
this philosophy, programmers can continue to work with the abstraction that there is
a pool of processors and even do their development in the usual way on a traditional
cluster of processors. Once their applications are functionally correct running on the
software cluster, they, or some future tool, can map some or all of the parallel tasks to
appropriate architectures. This has the additional advantages that it removes a layer
of complexity from the programmer, i.e. not having to think about what accelerator
to use and how to incorporate it into the application, and also provides portability
because the appropriate architecture may change depending on the requirements
and over time. Code portability is extremely important and is what has enabled the
development of a vast amount of software code that can be easily reused and adapted.
It is important not to lose this property as we move to a more heterogeneous world.

At the University of Toronto, the high-performance reconfigurable computing
group focuses its work on making Field-Programmable Gate Arrays (FPGAs) easier
to use as computing devices. Our early work of adapting the Message-Passing Inter-
face (MPI) [13] to a heterogeneous platform [21] made it possible for a biochemistry
Ph.D. student to help develop a heterogeneous computing platform to do molecular
dynamics simulations comprising Xeon processors and FPGAs [15]. By using MPI,
the application could be first developed on a standard Linux cluster using a stan-
dard MPI library distribution with all the advantages of the software debugging and
performance analysis tools available. A later step mapped appropriate computations
onto FPGAs that were enabled to use MPI communications. None of the parts that
remained in software had to be changed. The success of the MPI work has motivated
us to continue the philosophy of working with existing programming models and
frameworks and finding ways to adapt them to use FPGAs. This paper describes
the achievements and current work we are doing towards building the many layers
required to deploy FPGAs in the cloud.

In Sect. 2.2, we describe the abstraction layers used in the software world and
we propose an equivalent set of layers for hardware implemented in FPGAs. We
then show the additional layers required for deploying applications in the cloud.
The abstraction layers help to identify the different functional requirements needed
to build a fully heterogeneous computing environment comprising processors and
FPGAs. Section 2.3 describes the basic components used within our cloud platform
and Sect. 2.4 presents our middleware platform for building heterogeneous FPGA
network clusters in our cloud. A slightly different middleware platform for building
heterogeneous virtualized network function service chains is described in Sect. 2.5.
Work towards supporting multiple tenants sharing an FPGA is described in Sect. 2.6
and an approach to enable the live migration of FPGA computations is described in
Sect. 2.7. We end with some final remarks in Sect. 2.8.
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2.2 Abstraction Layers

It has always been much more difficult to build computing applications on FPGAs
because there is very little infrastructure that supports the applications [9], partic-
ularly when it comes to input/output and the memory system. It is common for an
FPGA application developer to also be burdened with building the PCle interface for
connection to the host, the driver for the PCle interface and the memory controller
to access the off-chip memory. This must be done again when a new FPGA board is
to be used. In the software world, this problem rarely occurs because many abstrac-
tions have been developed that software relies on to achieve ease of development
and portability. For example, Linux [14] can be considered an abstraction layer that
runs on many platforms, so any application built to run on Linux will generally be
able to run on any Linux platform.

Figure 2.1 shows the abstraction layers between a software (SW) application and
the hardware platform [9], which is typically the system Motherboard. Using an
MPI application as an example, portability is achieved because the MPI Program
uses a standard MPI Library for message passing. The library is available for several
Operating Systems (OS), such as Linux, so the application can be run on different
systems as long as there is a library available. The lower levels of the SW OS
must adapt to the hardware platform. The vendor of the processor hardware usually
provides a thin firmware layer call the BIOS that can do operations like hardware
system checks, initialization and boot the operating system.

Figure 2.2 shows how the software abstraction layers of Fig. 2.1 can be aug-
mented with equivalent hardware abstraction layers [9]. We propose these layers as
a way to think about what is required to properly support computing on an FPGA
platform. This follows our philosophy of learning from the success of the environ-
ments developed for building software applications. The interconnect is any physical
link that allows software running on the processor to communicate with the appli-
cation running on the FPGA. The Board Support Package (BSP) provides facilities
similar to a BIOS. In Fig. 2.2, we show the BSP partitioned into a software part
(BSPS) and a hardware part (BSPH) because there will typically be some control
software that can interact with the BSPS and the BSPH will provide an interface to
the components running in the FPGA Fabric. The HW OS represents a hardware

Fig. 2.1 Abstraction layers

between software SW Application MPI Program
applications and the
hardware (from [9]) SW Middleware MPI Library
SW 0OS Linux
BIOS
Processor Motherboard
Hardware
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Fig. 2.2 Adding abstraction
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operating system, which is essentially a layer that provides some services, such as
memory access and networking. In our MPI system [21], the on-chip networking
and bridges to communicate off-chip would be considered to be in the HW OS layer.
The HW Middleware layer provides a programming model or application interface
to the hardware application. The Message Passing Engine [21] provides a hardware
interface to message-passing functions used by our hardware MPI functions, so it
would be considered a HW Middleware layer.

The abstractions shown in Fig. 2.2 make it possible to build heterogeneous appli-
cations that can be portable across many platforms as long as the requisite abstraction
layers are provided. When moving to a data centre or cloud environment, there are
even more layers of abstraction required. Figure 2.3 shows the additional abstrac-
tion layers that are needed to build a cloud environment. The software and hardware
abstractions just discussed remain because they are needed to support the software
and hardware applications on the software and hardware platforms, respectively.
However, a cloud environment entails scaling to thousands of computing platforms,
which in our work can be traditional processors, or servers, running software and
platforms that comprise FPGASs to execute applications that are implemented in hard-
ware. The cloud abstraction layers are required to support and manage the large-scale
infrastructure that is the cloud.

The Resource Management and Resource Allocation layers are used to keep track
of the computing resources and handle requests for resources from the users. In our
environment, we are using OpenStack [17], which is an open-source cloud manage-
ment platform to provide these services. For the networking layer, we use components
of OpenStack as well as OpenFlow [2] in the SAVI Network testbed [3]. The inter-
connect in a cloud platform is a network. In Fig. 2.3, the Interconnect is shown to
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Fig. 2.3 Abstractions in a cloud environment

connect to the Processor Hardware where the Network Interface Card (NIC) resides
and to the BSPH on the hardware platform, which contains the network interface.
These interfaces are configured from the Networking layer in the cloud infrastruc-
ture. The Deployment layer is responsible for creating the virtual cluster configuration
required for an application and loading the application into the computing platforms,
which would mean loading bitstreams in the case that FPGAs are used. Components
of OpenStack can do this for software applications, but not for hardware applica-
tions that are to run in FPGAs. Our approaches for deployment in two use cases are
described in Sects. 2.4 and 2.5.

In a cloud environment, we typically talk about allocating and using Virtual
Machines (VMs) rather than physical machines. Containers are also popular, but
at the level of this discussion, we will treat them as a variation on the VM abstrac-
tion and focus the discussion on VMs. The abstraction of using virtual machines
makes it possible to share physical machines by enabling them to support multiple
virtual machines. To support this virtualization, we modify the software abstractions
by inserting a hypervisor layer below the OS level. The hypervisor interfaces to the
hardware and presents a virtual hardware interface to the guest operating systems that
run on top of it thereby enabling the sharing of the hardware by the guest operating
systems. The parallel on the hardware side of the abstractions also occurs at the OS,
i.e. HW OS, layer. Given the limited types of functionality currently provided at the
HW OS layer, we do not make the distinction between an OS and a hypervisor at this
time. Instead, we will use the term hypervisor to represent the HW OS layer shown
in Figs. 2.1 through 2.3. The hypervisor is equivalent to the shell in Microsoft termi-
nology [19]. In Sect. 2.3.4, we describe a basic hypervisor and Sect. 2.6 introduces
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our current work towards a hypervisor that can securely support multiple tenants, i.e.
multiple applications. The capabilities of the hypervisor have an impact on what kind
of support can be provided to an application, the security and privacy capabilities
for supporting multiple tenants, all the way to the higher level abstractions, such as
what can be provisioned by OpenStack.

2.3 Our Cloud Computing Platform

In this section, we describe the main components in the cloud computing infrastruc-
ture that we are developing. We use OpenStack [17] to manage the compute resources
and OpenFlow [2] for the networking. We describe our physical testbed and then our
basic FPGA hypervisor that we use to manage user hardware applications and how
this interfaces with our provisioning of FPGAs in the data centre. Then, we will
describe how we provision the FPGA resources to allow other network-connected
devices within the cloud to communicate with the FPGAs. This infrastructure is
described in detail in [23]. We close this section by describing a software/hardware
design flow for the cloud that can be used in our platform.

2.3.1 OpenStack

OpenStack [17] is an open-source cloud management platform that services user
requests for virtual machines and maps the virtual resources onto physical resources
in the data centre. A user request includes specifications of the required machine (or
cluster) such as memory, hard-disk space and even PCle devices (this is how we pro-
vision FPGAs in our environment), along with a software image that is to be loaded
on the virtual machine. The physical details of the resources of the underlying physi-
cal server are abstracted away from the user. The physical resources in the data centre
are all tracked by OpenStack. Such resources include computing resources, such as
conventional CPU resources and FPGAs (through our extensions), and networking
resources. For CPU resources, OpenStack communicates with a manager on each
physical server referred to as an agent. The agent relays information pertaining to the
resource utilization on the physical server, and OpenStack then uses this information
to determine if the physical server can service the user’s request.

2.3.2 Software-Defined Networking and OpenFlow

Our infrastructure includes both CPUs and FPGAs that each has their own direct con-
nections to the network. To configure flexible network connections between CPUs
and FPGAs, we use Software-Defined Networking (SDN). SDN is a concept that
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enables programmatic control of entire networks via an underlying software abstrac-
tion [16]. This is achieved by the separation of the network control plane from the
data plane. SDN opens the door for users to test custom network protocols and rout-
ing algorithms, and furthermore, it allows the creation, deletion and configuration
of network connections to be dynamic. The current de facto standard protocol for
enabling SDN is OpenFlow [2].

SDN provides an abstraction layer for the user through an SDN controller. The
SDN controller, often referred to as the network operating system, abstracts away
network details from the user programs. These details include the physical locations
of the switches and the configuration of the physical network. A user network program
would be a program in the control path responsible for configuring a data path usually
based on some input such as network usage. An example can be a load balancer,
where abstractions are provided to view the network usage on the switches and the
user program can redirect traffic accordingly. Switches in the data plane can simply
handle header matching and basic packet modifications, however, parsing the payload
or complex pattern matching requires a user program in the control path.

2.3.3 The SAVI Testbed

The Smart Applications on Virtualized Infrastructure (SAVI) testbed is a Canada-
wide, multi-tier, heterogeneous testbed [3]. The testbed contains various heteroge-
neous resources such as FPGAs, GPUs, network processors, 10T sensors and con-
ventional CPUs. The virtualization of these resources is one of the goals of SAVI,
where our work investigates the FPGA platforms. Some resources, such as GPUs
and network processors, are given to the user either by providing the entire machine
without virtualization or with the use of PCle passthrough, which is a mechanism
for giving a virtual machine access to a physical PCle device.

The multi-tier property refers to the network architecture of SAVI. SAVI can be
seen as multiple cloud networks. The core network consists of a large number of
CPUs that provide the backbone of the data centre. This core network is then con-
nected to several edges dispersed around Canada. Each of these edges is a miniature
cloud network that also contains the heterogeneous devices. Many of these heteroge-
neous devices are connected directly to the network through high-performance 10 Gb
switches. These devices are treated the same as any CPU would be treated as many
of these devices are assigned network ports with valid MAC and IP addresses. These
devices are addressable by any other node (CPU or other device) on the network,
once they are registered to the network. This allows, for example, an IoT sensor in
Victoria to send data to an FPGA cluster in Toronto and then have the processed
results be accessible by a CPU cluster in Calgary. Furthermore, the multi-tier archi-
tecture enables much of the processing to be done on the edge network with the
heterogeneous devices before being sent to the large CORE where more compute
resources are available.
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From the perspective of our work, SAVI is a working cloud computing platform
that uses OpenStack and OpenFlow. We leverage the existing SAVI testbed to develop
our FPGA-based cloud infrastructure.

2.3.4 A Basic FPGA Hypervisor

In our initial cloud deployment, we have implemented a simple FPGA hypervisor that
provides a basic I/O abstraction for a user application. The abstracted I/O includes
the network, PCle and off-chip DRAM. The basic FPGA hypervisor is shown in
Fig.2.4. Along with our hypervisor, we provide a driver called the Hardware Abstrac-
tion Layer (HAL) that can communicate to the FPGA via PCle. The HAL provides
an API for the user to communicate with various components in the FPGA through
a memory-mapped interface. The communication includes configuring a processor
in the hypervisor, sending control data to an application and transferring data to and
from off-chip memory. With these connections, users can use the hypervisor to create
a data path for their application using the network and configure control signals via
the HAL.

Within the FPGA, the components controlled by the HAL are accessed using the
AXI protocol. This is the standard protocol for memory-mapped interfaces used by
Xilinx memory-mapped IP cores as well as ARM cores [7]. For the data path of
our application, we use an AXI stream interface that is connected to the 10 Gb/s

Fig. 2.4 System diagram of
our basic FPGA hypervisor

Processor
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networking interface on the FPGA. This interface streams packets as 8-byte words
at a clock rate of 156.25 MHz.

The hardware application is programmed into the application region using partial
reconfiguration. This ensures that only the application region is reprogrammed while
keeping the rest of the hypervisor online and configured. The partial bitstream is
transferred from the CPU to the FPGA using PCle.

The programming and management of the application region are done with the
Processor shown in Fig. 2.4. The Processor manages the decoupling gates (denoted
by the boxes in front and behind the Application Region) and the ICAP within the
FPGA. The ICAP is an IP within the FPGA Hypervisor that programs the FPGA with
a partial bitstream. To ensure safe programming, the decoupling gates disconnect the
Application Region from the Ethernet module during partial reconfiguration. Gating
ensures that there are no transactions in flight in the data path (AXI stream from the
network) or the control path (AXI from the PCle) while we reprogram the Application
Region. Once reprogrammed, the Processor un-gates the Application Region, thus
reconnecting it to the data and control paths. The gating, programming and un-gating
of the Application Region by the Processor are initiated through an API call from
the CPU through PClIe and the HAL. The programming of the Application Region
can be extended to be done over the network if we make a path to communicate with
the Processor through the network.

2.3.5 OpenStack and OpenFlow Deployment of an FPGA
Resource

Deploying an FPGA in the data centre requires establishing a means to provision
the FPGA and then to connect the FPGA in the network. We use OpenStack to do
provisioning and OpenFlow to make the network connections.

2.3.5.1 OpenStack FPGA Provisioning

The first step is to be able to provide an FPGA within a virtual machine. PCle
passthrough gives a virtual machine full access to a subset of PCle devices within
a physical compute node. This can allow us to have multiple virtual machines on
top of the physical machine able to access different PCle devices. The agent on the
physical server registers a PCle device by the unique PCle vendor and device ID.
If the PCle device is provisioned to a virtual machine, the agent marks the PCle
device as in use and will not provision this device to any other virtual machine,
giving the virtual machine full access to the PCle device. This also allows us to
control the CPU specifications of the virtual machine coupled to the PCle device.
In some use cases, we observe that the CPU is merely used to send control signals
for configuration and programming of the FPGA whereas the data path uses the
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10 Gb/s network connections. Here, a small CPU for the virtual machine is sufficient.
Sections 2.4 and 2.5 will give examples of this scenario. In the case where a full
FPGA development environment must be run on the virtual machine, we might want
to configure a larger CPU for the virtual machine.

2.3.5.2 SAVI FPGA Network Registration

To provision the network port on the FPGA, we use OpenStack to reserve a virtual
network port using the Neutron project in OpenStack [18]. Neutron maintains a
database of all network ports provisioned within the data centre. A network port by
our definition includes a MAC address and an IP address. We then use the SAVI SDN
controller to register the physical port on the switch connected to the FPGA with the
virtual network port provisioned with Neutron. This includes storing the mapping of
the virtual to physical port in a database accessible by our SDN Controller. When a
packet matching the physical port and the packet header defined by the virtual port is
observed by the switch, it notifies the controller and then the switches are configured
with the flows to forward all subsequent packets matching the packet header. In our
environment, we have a single FPGA per physical server, and by determining which
physical server is hosting the virtual machine with the PCle-connected FPGA, we
can infer the physical port on the switch that connects to the FPGA using our internal
database. Once this port is registered, it is now accessible on the network by any other
device in the data centre, including other virtual CPUs and FPGAs.

2.3.6 Software/Hardware Design Flow for the Cloud

We deployed our FPGA cloud service in May 2015. Since then it has been used by
students within the University of Toronto as part of their own FPGA development
environment.

Our infrastructure in the cloud also allows designers of large multi-FPGA network
designs to approach their design with an incremental design flow. An example of this
design flow is as follows:

1 Implement all parts of the design in software. Each function is an OpenStack
image that contains a software application listening to the network port, per-
forming a function and outputting to the port.

2 Implement and test each individual function as an FPGA-offloaded design, i.e.
the inputs and the outputs of the FPGA function are connected to the host CPU
to allow for easier debugging.

3 Swap the software-based function with the tested FPGA-based kernel.

4 If the heterogeneous cluster remains functionally correct, then repeat Steps 2
and 3 for the next function the chain. Repeat until the whole cluster is imple-
mented using FPGAs.



2 Building the Infrastructure for Deploying FPGAs in the Cloud 19

This design flow allows for easy sharing of the physical FPGA. Cloud managers
can track usage of the physical FPGAs by using monitoring functions provided by
OpenStack.

2.4 A Middleware Platform for Building Heterogeneous
FPGA Network Clusters

In this section, we describe a framework that allows users to map large logical clusters
of IP blocks onto a physical multi-FPGA cluster [23]. Our middleware platform
automatically divides a logical cluster into multiple FPGAs based on a mapping file,
provides the logic for the network communication and issues the OpenStack and
OpenFlow commands to provision and connect the clusters.

2.4.1 Logical-to-Physical Mapping of Kernels

We define a streaming digital circuit as a kernel within our infrastructure. The kernels
in this system are streaming kernels using the AXI stream protocol for input and
output.

All kernel inputs to the system are addressed by a specific destination entry in a
packet. Logically speaking, unless otherwise stated, any kernel output can connect
to any kernel input. This can be seen as all kernels being connected to a large logical
switch. These kernels may be mapped to the same FPGA or to different FPGAs.
Furthermore, these kernels can be replicated with directives in the input scripts and
they can be scheduled in different ways with the use of schedulers.

Along with the logical cluster description of the circuit, the user provides a map-
ping file. The mapping file specifies the number of physical FPGAs the user requires
for implementing their logical cluster and the assignment of kernels to the FPGAs.
Given this mapping, the logical switch is mapped into several physical switches
across multiple FPGAs. Furthermore, we create the logic to communicate between
FPGAs by appropriately encapsulating packets with network headers (MAC address).
Lastly, we program the network switches to ensure that all FPGAs can address every
other FPGA with the appropriate MAC address. Figure 2.5 illustrates an example of a
logical cluster being transformed into a physical cluster by our hardware middleware.

2.4.2 FPGA Application Region

The application region is shown in more detail in Fig. 2.6. It includes Input and
Output helper modules for each user kernel to interface directly with the network
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Fig. 2.5 This is an example
of a logical cluster being
transformed into a physical
cluster. The user provides the
logical cluster and mapping
file (not shown), which is
then transformed into a
physical cluster. The FPGA
switches, logic to
communicate over the
network (not shown) and the
programming of the network
switch is automatically
generated

Fig. 2.6 Details of the
application region. The input
and output modules are both
configured by the
configuration bus

(from [23])
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through the Ethernet interface. The helper modules are responsible for filtering pack-
ets, formatting packets and arbitrating for the network port. The configuration bus is
used to configure the input and the output modules. These signals are driven by the
PCle module in the Hypervisor shown in Fig. 2.4, which receives signals from the

PCle-connected virtual CPU.

The Input and Output modules are automatically configured by our middleware
platform. This ensures that users need only consider the communication of kernels
at a logical level and are not concerned with the inter-FPGA communication of these
kernels if they are on different FPGAs. This also ensures that users do not have direct
access to the Ethernet headers, which can be a security requirement within some data

centres.
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The Input Module is responsible for receiving packets from the network, filtering
packets not destined for this FPGA (using the header) and then directing the packet
to the destination kernel on the FPGA using a destination address. Each packet has
two layers of addressing, one is the MAC address of the FPGA and the second is the
kernel address within the cluster.

The Output Module is configured with a packet encapsulator to ensure the packet
is received by the next hop. Our middleware platform is aware of the inter-FPGA
connections and configures the Output Modules with the appropriate headers (FPGA
MAC address and kernel address) to ensure that network packets are received by the
appropriate FPGA and user hardware kernel.

2.4.3 The Creation of a Heterogeneous Network Cluster

We summarize the use of our system by describing the complete flow for building
a heterogeneous network cluster of FPGAs. This flow can be seen as a middleware
layer where the software component comprises scripts to parse input files, make calls
to OpenStack and OpenFlow, and configure the hardware. The hardware component
of this middleware layer includes all the additional hardware that is added to the
application kernel to support the communication between kernels. In the first step,
the user submits a logical cluster description and FPGA mapping file to a global
FPGA parser. Our middleware then generates the appropriate OpenStack calls to
provision the FPGAs and OpenFlow calls to connect the network-connected FPGAs.
OpenStack calls are generated to create virtual machines. Most are lightweight CPU
virtual machines connected to FPGAs plus one large virtual machine dedicated to
synthesize bitstreams. Subsequent OpenStack calls are generated to create network
ports, each with valid MAC and IP addresses. These ports are registered with the
SAVI switch, and now all packets sent to these addresses will be forwarded to the
correct switch port. After all the OpenStack calls are generated, the individual FPGAs
are synthesized on the large virtual machine dedicated to synthesizing bitstreams.
Once the bitstreams are synthesized, they are forwarded to the individual FPGAs to
be programmed into the FPGA. Once programmed, the input and output modules are
configured by the FPGA software driver running on each lightweight CPU attached to
the FPGAs via PCle. In summary, after the user submits the initial cluster description
files, the rest of the calls are automatically generated by our middleware platform. The
user receives a connected FPGA network cluster for their logical cluster and mapping
file. This virtual abstraction hides all the automatically generated OpenStack calls,
registration of network ports, bitstream generation and programming of the FPGAs.
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2.5 A Middleware Platform for Integrating FPGAs
into Virtualized Network Function Service Chains

This section describes a middleware platform that models FPGAs as Virtualized
Network Functions (VNF) [22]. Section 2.4 describes a middleware platform where
any FPGA kernel can communicate to any other kernel through a large logical switch
potentially spanning many FPGAs. In service chaining, all the traffic through a
function (implemented as software or a hardware kernel) is sent downstream through
a specific path of functions. These can be seen as middle boxes for networking
applications, each with a network source and sink. Each VNF can intercept the
traffic, process the traffic and send the processed traffic to the network sink. This
can be seen as a circuit switched network where the paths are stationary (unless
reconfigured by our Service Chain Scheduler discussed in Sect. 2.5.3).

2.5.1 Network Function Virtualization

Network Function Virtualization (NFV) [11] is a concept for virtualizing network
functions that have traditionally been provided by proprietary vendors as closed-box
appliances. A network function is defined as a device that provides a well-defined
network service, ranging from simple services, such as firewalls, content caches and
load balancers, to more sophisticated ones such as intrusion detection and prevention.
With recent gains in CPU performance, NFV aims to virtualize these services and
create Virtualized Network Functions (VNFs) in software, running on commodity
devices.

2.5.2 Service Chaining of VNFs

The activities surrounding SDN complement the recent work on NFVs. Both concepts
aim to enable more flexible provisioning and management of infrastructure resources.
When NFV is deployed in conjunction with SDN, it gives network operators the
ability to create complex network services on demand by steering traffic through
multiple VNFs realized using programmable resources. This practice is often called
service function chaining (SFC), or simply service chaining. In addition, since NFV
allows VNFs to be created or migrated closer to where they are needed, SDN can be
leveraged to automatically re-route traffic to wherever the VNFs are placed.

The ability to share VNFs between different traffic flows can even be realized.
Consider the case of email traffic that is steered through a service chain comprised
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Fig. 2.7 An example of a service chain consisting of anti-virus, spam filter and phishing detection
VNFs. Email traffic goes through a chain of all three VNFs, while web traffic only goes through
one, which is shared with the email traffic (from [22])

of anti-virus, spam filtering and phishing detection VNFs. Similarly, web traffic can
be steered through the same spam filtering VNF to block ads. An example is shown
in Fig. 2.7, where an operator forms a chain of VNFs.

2.5.3 FPGA VNF Service Chain Scheduler

We use the service chain model to create heterogeneous chains of FPGAs and CPUs
in our data centre. We present our service chain scheduler that we use to create het-
erogeneous network flows within our data centre. The service chain scheduler’s main
role can be described in two stages: the allocation stage and the networking stage.
The allocation stage is responsible for provisioning the appropriate resources. This
involves generating the OpenStack provisioning commands to acquire the FPGAs
and the network ports, create the FPGA bitstreams and program the FPGA. The net-
working stage issues the OpenFlow commands to program all the switches to create
the path specified by the user in their requested service chain. Figure 2.8 shows the
high-level view of the service chain scheduler, where the two stages of its operation
are illustrated.

2.5.4 Overview of Our VNF Middleware Platform

This is another example of a middleware platform that builds on top of our heteroge-
neous infrastructure. The platform is similar to the platform presented in Sect. 2.4 that
automated the provisioning of resources in the cloud and created a cluster described
by the user. The main difference is that this VNF middleware platform creates a fixed
path that we can modify with our service chain scheduler. We can also leverage the
incremental design flow that was described in Sect. 2.3.6, where we can create our
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Fig. 2.8 The service chain scheduler is divided into two stages, an allocation stage and a connection
stage (from [22])

entire chain using CPU VNFs first and incrementally swap CPU VNFs for FPGA
VNFs. This also allows service providers to consider different tiered VNF services.
For example, they could implement a software implementation of their VNF for a
low-cost service and an FPGA implementation of their VNF for a premium service.

2.6 A Multi-tenant Hypervisor

The hypervisor described in Sect. 2.3.4 enables a basic FPGA deployment where
the FPGAs can be considered as peers to traditional compute nodes. The primary
requirement is for an application thread to be able to interact directly with other
threads over the network without requiring a host processor to broker the interac-
tion. This is acceptable when we have a platform where physical computing devices
interact directly with other physical computing devices. However, in a cloud envi-
ronment, sharing of the physical computing devices by multiple users, or tenants, is
common with processors and our goal is to support the same capability with FPGAs.
The required capabilities must be provided by the hypervisor. This section describes
ongoing work that is building towards an FPGA hypervisor that can support multiple
tenants and preserve the abstractions we desire to make application development
easier.

The sharing of resources between mutually distrusting hardware applications
brings with it two key requirements: data isolation, the separation and protection of
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an application’s data from other applications; and performance isolation, the decou-
pling of the performance of one application from the activities of another application.
We manage these requirements by providing virtualized access to memory and net-
working resources.

In Sect. 2.2, we discussed the need for abstractions to make application develop-
ment easier and portable. While the networking and memory access of the hypervisor
presented in Sect. 2.3.4 constitutes a very basic and functional hardware OS with
simple abstractions, we wish to implement a hypervisor with a richer set of abstrac-
tions, further easing the development of hardware applications while enabling the
sharing of a physical FPGA by multiple tenants. In the remainder of this section,
we discuss the design of an FPGA hypervisor that aims to implement these more
advanced abstractions to provide true virtualization.

2.6.1 A Hpypervisor Architecture Supporting True
Virtualization

To facilitate a multi-tenant FPGA platform, Partial Reconfiguration (PR) is used to
create multiple application regions on the FPGA, i.e. the FPGA is shared spatially.
The use of PR makes it possible to program an application region without affecting
other application tenants. When using PR, it is important to decide what logic is
included in the static region, the part of the FPGA that surrounds the PR regions.
Should all potential higher level abstractions be supported by the static region?

To help answer this question, recall from Sect. 2.2 that the purpose of an HW
OS is to provide a common abstraction across a range of systems. An effective
FPGA hypervisor should be designed such that the abstraction can be implemented
on a broad range of PR regions, FPGA boards and even eventually FPGA vendors.
A consequence of this need is that the lowest level of portability for a hardware
application will be the application source code, such as Verilog, or perhaps a circuit
netlist, given that bitstream portability is unlikely to be feasible in the foreseeable
future. Therefore, higher level abstractions and services can also be implemented
as source code or netlist-based IP cores that are /inked to the application before the
place and route step, and do not need to be included in the static region.

For the design of our hypervisor, we abide by the rule that only those components
of the system that need to be shared among the PR application regions are included
in the static region. From a virtualization perspective, each shared resource (i.e.
memory, network connection, etc.) must implement data and performance isolation
that is outside the reach of the end user, so the shared resources must be implemented
in the static region.

Microsoft coined the term shell [ 19] for the static region in their FPGAs, which has
now become commonly used by others. In our hypervisor, we introduce the concept
of a hard shell and a soft shell. The hard shell provides only minimal features to
facilitate multi-tenancy, which must also be inaccessible, i.e. not changeable by the



26 N. Tarafdar et al.

‘ Soft Shell (PR Region) |

DDR Frotacol z ¥ MPICore potoc! Ethernet
Controller Verifier/ - o 8 [ ; ) vedfier/ Controller
Decoupler 25 || HW Application 1 | . Decoupler

I = TCP Core —
Memory Bandwidth- Bandw.ldth- ARP
Management Shaping Shaping ‘W Core
Unit (MMU) Interconnect Soft Shell (PR Region) Interconnect |
1 " 1 File-Stream 1 1

Protocol = £ t Accessor Protocol Network
Verifier/ E ‘5 HW Application 2 (——3 Verifier/ Management
Decoupler ‘ g7 FCOE Core | ‘ Decoupler Unit (NMU)

Fig. 2.9 System diagram of a multi-tenant FPGA hypervisor. Each application has a user-defined
interface, with the soft shell implementing the necessary IP cores and glue logic to achieve the
desired functionality. Performance isolation is ensured with bandwidth shaping interconnects and
the memory/network management units

user. The soft shell is a generated wrapper for a user application that provides higher
level abstractions and services specifically required by the user application.

Analogous to the soft shell is making system calls to an operating system for
particular services. Since an FPGA has limited resources, it is not possible to include
all possible services that might be required. Instead, we generate the soft shell to
provide only the services required by an application, such as a TCP/IP stack or a
particular memory interface. An augmented synthesis flow takes the user application
and generates the set of IP cores that implement all the required higher level abstrac-
tions, plus the interconnect required to pair this newly created soft shell to the PR
boundary interface of the hard shell. As shown in the hypervisor system diagram of
Fig. 2.9, each application region can have its own unique soft shell.

2.6.2 Memory Channel Virtualization

One of the key resources used by hardware applications on FPGAs is off-chip mem-
ory. An important requirement we address is to ensure that the sharing of memory
resources guarantees both performance and data isolation. To provide data isolation,
a Memory Management Unit (MMU) is used to translate memory requests from
the application regions to their allocated portion of memory. This MMU can either
implement a segment-based remapping (some additive offset and max size) or a
page-based remapping. If the page table is stored completely in on-chip SRAM (as
in our current implementation), the tradeoff between the two types of remapping is
only that of internal vs external memory fragmentation. Our hypervisor is parameter-
ized to implement either form of remapping, though a study of which fragmentation
problem is more significant for hardware applications is still needed and will be part
of our future work.

An advanced feature we have implemented in our hypervisor is something we call
virtual channels, where each logical memory interface instantiated in the application
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can be allocated a range of the memory region independently, with MMU translation
occurring on a per logical interface basis, rather than having a single translation for the
entire application region. From the user’s point of view, each logical memory interface
(declared in the user’s source code) appears and acts as an independent memory
channel. One example where this separation is necessary is shown in Application 1
of Fig. 2.9 where a TCP core instantiated in the soft shell needs access to off-chip
memory. The TCP core is given a separately allocated part of memory that the user
application cannot access and cannot corrupt.

To ensure performance isolation, we need to be able to regulate the memory
bandwidth used by each application. This ensures that one application cannot spam
the memory interface with requests that cause other applications to be denied access.
Our hypervisor implements a bandwidth shaping interconnect to arbitrate access to
shared resources and guarantee bandwidth allocation requirements. In addition to
bandwidth allocation, illegal or spurious requests to any shared interconnect need
to be blocked to prevent the interconnect from entering an error state or stalling
operations. A protocol verifier and decoupler are included for this purpose, complete
with timeout conditions.

2.6.3 Networking Virtualization

Our hypervisor also implements data and performance isolation for shared and vir-
tualized networking resources. One possible way to implement performance iso-
lation for network traffic is using the Enhanced Transmission Selection of IEEE
802.1Qaz [6] to implement traffic shaping in the Ethernet network while using the
Priority Flow Control of IEEE 802.1Qbb [5] to assert back pressure on the network
interfaces of each PR region. While this would offload the bandwidth shaping to the
networking infrastructure of the data centre, it complicates the network setup and
limits each PR region to a single IEEE P802.1p [4] class of service, which could be
undesirable. Instead, a bandwidth shaping interconnect like that used for the memory
interconnect is used to implement performance isolation. Note, the IEEE 802.1Qbb
protocol can still be implemented to allow for higher level abstractions and function-
ality that require lossless Ethernet networking, such as Fibre Channel over Ethernet
(FCoE).

Implementing data isolation for a networking interface is more complicated, since
it depends on the level of abstraction at which the networking infrastructure is pro-
vided. If network isolation is ensured at the VLAN level, each application’s network
traffic is appended with the proper VLAN tag and traffic received from that VLAN
is forwarded to that application. If isolation is ensured at the Ethernet layer (L2),
the source and destination MACs are modified and traffic received for that MAC
address is forwarded (i.e. each application has a unique MAC address). If isolation
is ensured at the IP Layer (L.3), the source and destination IP addresses are modified,
ARP requests are sent to retrieve the proper MAC address for unknown destina-
tions and traffic destined for that IP address is forwarded (i.e. each application has
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an assigned MAC and IP address). Finally, if isolation is ensured at the TCP/UDP
Layer (L4), the source and destination ports are modified and traffic received on the
assigned port is forwarded.

Rather than restrict the hardware application developers to a specific networking
layer, our Network Management Unit (NMU) can implement any of the above-
described functionalities. Like the virtual channels used for the memory virtual-
ization, each logical network interface created in the application has an ID that is
forwarded with any of its traffic to the NMU; the NMU uses this ID to determine the
required level of network restriction. Note, the NMU does not perform any encap-
sulation, e.g. an application cannot send a raw TCP stream to the NMU and expect
a proper Ethernet packet to be output. Instead, the encapsulating logic is generated
in the soft shell region, and the NMU simply checks the packet fields to ensure sent
packets are isolated to permitted sections of the network. This NMU design allows,
for example, an implementation where one application is restricted to a specific
VLAN but can send/receive for multiple physical addresses, while two other appli-
cations share a fixed MAC/IP address but send/receive data on different TCP/UDP
ports. The memory and network performance isolation logic is shown in Fig. 2.9.

2.6.4 Management and Host Connectivity

A mechanism to manage the multi-tenant FPGA system, including setting up the
parameters of the MMU and the NMU and programming the applications regions, is
required. This is accomplished using a CPU running a lightweight software OS that
allows remote connections (e.g. using ssh) or runs an agent that can communicate
with OpenStack. Such a management layer can either be run on an on-chip CPU
core (for SoC-type FPGA boards) or by a small control VM on a PCle-connected
host. This management layer would also need to manage the features implemented
in the soft shell. Upon generation of the soft shell, an XML file containing the soft
shell configuration is also generated. The XML file is passed to the management API
along with the bitstream. Each application region includes a management interface
that is used to configure the soft shell.

Though the FPGA hypervisor is mainly designed to be used in a stand-alone
computing model, some applications may want host connectivity to implement a
more traditional FPGA offload model. To implement this, a planned extension of
the hypervisor includes Single Root I/O virtualization (SR-IOV) for optional host
connectivity to the application regions. Under this model, the management interface
is connected to a management VM through one PCle Physical Function (PF), and a
second PF implements many Virtual Functions (VF) that can be connected directly
to the application regions and other software VMs on the same host. This would
allow for the FPGA hypervisor to facilitate both stand-alone computing hardware
applications and more traditional offload accelerator hardware applications.
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2.7 Live Migration of FPGA Functions

On cloud platforms, live migration is the process of transferring the current state of
arunning Virtual Machine (VM) from one server to another. It is usually a seamless
process in which the VM does not know or notice that it has been live migrated. Major
cloud providers, like Google [12] and Rackspace [20], make use of live migration to
protect their customers from hardware failures, to bring down a host for maintenance,
and to perform load balancing. FPGAs in the Cloud are prone to similar issues of
that of server hardware and will require a live migration like mechanism to move
applications from one FPGA host to another with minimum disruption and downtime
to the customer.

Live migration on FPGAs comes with a few challenges. One is having a mech-
anism to save the state of an FPGA in a quick and efficient manner. Unlike with
a server VM, where the state is stored in off-chip memory and in a few CPU reg-
isters, the state of an FPGA application is stored in its off-chip memory, on-chip
memory and thousands of flip-flops. The contents of off-chip memory can be saved
and transferred using a technique used in server VMs called precopying [10]. One
approach to save the internal state of an FPGA application is to use the readback
functionality on FPGAs' to save the current state of all the flip-flops and internal
memories into a bitstream. That bitstream is then transferred to the target FPGA for
programming. This approach allows for seamless migration without notifying the
customer; however, it is slow and requires the application to be paused, which can
potentially violate the Service-Level Agreement (SLA). This approach also requires
the handling of very low-level challenges, such as how to start and stop the parts of
a design that work in different clock domains.

The current approach we are taking is to let the application save its own state. This
approach is like cooperative multitasking for software tasks in an operating system.
An application should have the most insight into what it needs to save to resume its
state after migration. This is more efficient than the previous approach because there
is no need to blindly save everything on the FPGA, only what is needed to restore
the state. This approach could also allow for applications to be migrated between
different FPGA devices. By letting the application save and restore its state to and
from memory, the state of the application is no longer bound to the internal state of the
FPGA, i.e. flip-flops and internal memories. By providing a standardized interface
to and from memory, the application’s source code can be used to produce several
bitstreams to target multiple FPGA devices with each of these bitstreams being
functionally equivalent. The state of the application can be restored by transferring
the memory contents of that application from the source FPGA to the target FPGA.
While a significant downside of this approach is that application developers will
have to explicitly add state saving and restoring functionality, it is a more feasible
approach at this time. Our first goal for FPGA migration is to achieve some level of
functionality because many of the higher level issues will be the same independent
of how the low-level state is saved.

I This feature is not available on all FPGAs.
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Fig. 2.10 Overview of the steps required to migrate an application between two FPGAs

An overview of the steps to migrate an application between two FPGAs is shown
in Fig. 2.10. Applications are placed and operate within a Partially Reconfigurable
(PR) region on the FPGA. An FPGA may have multiple PR regions for multiple
applications. The loading of applications is managed by an on-chip processor or
over PCle by a host CPU. The migration process begins when the cluster manager
schedules the migration task with the source and target processor. The target processor
notifies the migration controller on the FPGA to set up the MMU to allocate the
amount of memory specified by the manager. It will also program the PR with the
target application’s bitstream and put it into idle mode. The next phase involves
copying the memory contents of the application from the source FPGA to the target
FPGA using precopying. This is performed through the network port on the FPGA
and not through the host processor. Some time during this phase, the source migration
controller notifies the application of the pending migration to give the application
time to save its state to off-chip memory. The application is then stopped, and a final
round of copying is performed. The target migration controller sends a signal to the
application to tell it to resume from a previous state, at which point the application
will restore its state and resume operation on the target device. If an application’s
network configuration, e.g. IP and MAC addresses, will remain the same after the
migration process, the network fabric will be reconfigured to send packets to the
target device and any remaining packets destined for the application arriving at the
source device will be forwarded to the target device.
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2.8 Final Thoughts

The deployment of FPGAss in the cloud has already begun, starting with Microsoft [8,
19], recently Amazon Web Services [1] and others that have received less publicity.
Based on the available information, most of the deployments treat the FPGAs as
accelerators attached to a virtual machine except for Microsoft, where the FPGAs
are directly connected to the network [8]. Amazon and Microsoft differ in another
way. Amazon is making FPGAs generally available as a service, whereas Microsoft
currently only uses their FPGAs as part of their infrastructure, so the FPGAs are not
directly programmable by a customer. In the Amazon model, since the FPGAs are
just attached to virtual machines, then the changes required in the Amazon cloud
infrastructure are not too significant. Most likely, they can leverage most of what
they use for providing their GPU service because the GPUs are also PCle-connected
devices. With the network-connected FPGAs that Microsoft is using the challenge
is much greater. The work we are doing at the University of Toronto is much more
relevant to the Microsoft model.

One of the most critical issues in the cloud is security. An FPGA sitting in a
network can do a lot of damage because it can process and generate traffic at line
rates. There are currently no inherent security mechanisms built into an FPGA,
compared with processors where there are many features to support security. In the
slave accelerator configuration that Amazon uses, the virtual machine can enforce
the security around the FPGA, such as filtering packets from and to the network,
so it is much easier to manage security. The main additional feature required is
to guarantee the security and safety of the bitstreams. In the network-connected
FPGA model used by Microsoft and in our platform, the security problem is much
more challenging. That is probably the primary reason why Microsoft has not made
their FPGAs programmable by their customers. Our heterogeneous network cluster
hardware middleware we describe in Sect. 2.4 addresses some security concerns
by restricting the user from directly sending packets to the network. The multi-
tenant hypervisor we describe in Sect. 2.6 has features that continue moving towards
providing security features to make generally accessible FPGAs secure. Eventually,
to be truly robust, some of the features need to be in the hard logic of the FPGA, just
like they are in modern CPU processors.

What Amazon and Microsoft both need to provide is a common hypervisor infras-
tructure, like we are proposing, to make user applications portable across platforms.
If such a hypervisor existed, then it would be possible to build middleware that can
support applications and make FPGAs much easier to program as well as make it
easier to port applications between platforms. In our work, we have shown that the
hypervisor is really the foundation that supports all of the abstraction layers above
it, all the way into the cloud infrastructure, so the hypervisor design must be well
considered.

Microsoft has already demonstrated the benefits of having network-connected
FPGAs because they can be provisioned just like the CPUs. This means that the
FPGAs can also be used as a resource that can scale with user demand, which is
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exactly what is required in the cloud. We see this as validation for our approach
of integrating FPGAs into the cloud as peers to the processors. We have shown
the benefits of abstractions and middleware to help build large-scale, multi-FPGA
applications. There is still much work to do to make FPGAs easier to use and fully
accessible in the cloud.
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3.1 Introduction

Data centers have been traditionally defined by the physical infrastructure, imposing
a fixed ratio of resources throughout the system. A widely adopted design paradigm
assumes the mainboard tray, along with its hardware components, as the basic build-
ing block, requiring the system software, the middleware, and the application stack
to treat it as a monolithic component of the physical system. The proportionality of
resources per mainboard tray, however, which is set at design time, remains fixed
throughout the lifetime of a data center, imposing various limitations to the over-
all data center architecture. First, the proportionality of resources at system level
inevitably follows the fixed resource proportionality of the mainboard tray. With
the mainboard tray as the basic, monolithic building block, system-level upgrades
to facilitate increased resource requirements for additional memory, for instance,
bring along parasitic capital and operational overheads that are caused by the rest
of the hardware components on a tray, e.g., processors and peripherals. Second, the
process of assigning/allocating resources to Virtual Machines (VMs) is significantly
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restricted by the physical boundaries of the mainboard tray, with respect to resource
quantities. Such lack of flexibility in allocating resources to VMs eventually brings
the overall system to a state of stranded resource capacity, while yielding the data
center insufficient to facilitate the requirements of additional VMs. Third, technol-
ogy upgrades need to be carried out on a per-server basis, raising significantly the
costs when applied at scale, e.g., in an Internet-scale data center that can potentially
comprise thousands of servers (Fig. 3.1).

However, as current data center systems are composed by a networked collec-
tion of monolithic building blocks, shifting toward an architectural paradigm that
overcomes the aforementioned fixed proportionality of resources by breaking the
boundaries of the motherboard tray to achieve finer granularity in resource alloca-
tion to VMs entails various challenges and open problems to address. The challenges
and requirements broadly relate to four categories, namely the hardware platform, the
memory, the network, and the system software. A representative hardware-platform-
level requirement, for instance, entails the need to establish intra- and inter-tray
interconnection paths that are programmable, yet introduce minimal communication
overhead. For this purpose, a low-latency network architecture that is scalable and
achieves high bandwidth is needed. Remote memory allocation support and man-
agement is required, as well as efficient ways to maintain coherency and consistency,
while minimizing remote-memory access latency. Dedicated mechanisms to support
dynamic on-demand network connectivity and scalability, as well as orchestration
software tools that define resource topologies, generate and manage VMs, and ensure
reliability and correctness while exploring optimizations are prerequisites for the suc-
cess of the overall approach. Fine-grained power management at the component level
is required in order to minimize overall data center energy consumption.

To this end, the dReDBox (disaggregated Recursive Datacenter in a Box) project
aims at overcoming the issue of fixed resource proportionality in next generation,
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low-power data centers by departing from the mainboard-as-a-unit paradigm and
enabling disaggregation through the concept of function-block-as-a-unit. The fol-
lowing section (Sect. 3.2) provides an overview of existing data center architectures
and related projects, and presents the dReDBox approach to data center architecture
design. The remaining sections are organized as follows. Sections 3.3 and 3.4 present
the system architecture and the software infrastructure, respectively. Section3.5
describes a custom simulation environment for disaggregated memory and present a
performance evaluation. Finally, Sect. 3.6 concludes this chapter.

3.2 Disaggregation and the dReDBox Perspective

The concept of data center disaggregation regards resources as independent homo-
geneous pools of functionalities across multiple nodes. The increasingly recognized
benefits of this design paradigm have motivated various vendors to adopt the concept,
and significant research efforts are currently conducted toward that direction, both
industrial and academic ones.

From a storage perspective, disaggregation of data raises a question regarding
where should data reside, at the geographical level, to achieve short retrieval times
observed by the end users, data protection, disaster recovery, and resiliency, as well as
to ensure that mission-critical criteria are met at all times. Various industrial vendors
provide disaggregated solutions for that purpose, enabling flash capacity disaggre-
gation across nodes, for instance, or the flexible deployment and management of
independent resource pools. Klimovic et al. [13] examine disaggregation of PCle-
based flash memory as an attempt to overcome overprovisioning of resources that
is caused by the existing inflexibility in deploying data center nodes. The authors
report a 20% drop in application-perceived throughput due to facilitating remote flash
memory accesses over commodity networks, achieving, however, highly scalable and
cost-effective allocation of processing and flash memory resources.

A multitude of research efforts has focused on disaggregated memory with the
aim to enable scaling of memory and processing resources at independent growth
paces. Lim et al. [14, 15] present the “memory blade” as an architectural approach to
introduce flexibility in memory capacity expansion for an ensemble of blade servers.
The authors explore memory-swapped and block-access solutions for remote access,
and address software- and system-level implications by developing a software-based
disaggregated memory prototype based on the Xen hypervisor. They find that mech-
anisms which minimize the hypervisor overhead are preferred in order to achieve
low-latency remote memory access.

Tu et al. [24] present Marlin, a PCle-based rack area network that supports com-
munication and resource sharing among disaggregated racks. Communication among
nodes is achieved via a fundamental communication primitive that facilitates direct
memory accesses to remote memory at the hardware level, with PCle and Ethernet
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links used for inter-rack and intra-rack communication, respectively. Dragojevi¢ et
al. [9] describe FaRM, a main memory distributed computing platform that, similarly
to Marlin, relies on hardware-support for direct remote memory access in order to
reduce latency and increase throughput.

Acceleration resources, e.g., FPGAs, are increasingly being explored to boost
application performance in data center environments. Chen et al. [8] present a frame-
work that allows FPGA integration into the cloud, along with a prototype system
based on OpenStack, Linux-KVM, and Xilinx FPGAs. The proposed framework
addresses matters of resource abstraction, resource sharing among threads, interfac-
ing with the underlying hardware, and security of the host environment. Similarly,
Fahmy et al. [10] describe a framework for accelerator integration in servers, sup-
porting virtualized resource management and communication. Hardware reconfigu-
ration and data transfers rely on PCle, while software support that exposes a low-level
API facilitates FPGA programming and management. Vipin and Fahmy [25] present
DyRACT, an FPGA-based compute platform with support for partial reconfiguration
at runtime using a static PCle interface. The DyRACT implementation is targeting
Virtex 6 and Virtex 7 FPGAs, while a video-processing application that employs
multiple partial bitstreams is used as a case study for validation and evaluation pur-
poses.

More recently, Microsoft presented the Configurable Cloud architecture [7], which
introduces reconfigurable devices between network switches and servers. This facil-
itates the deployment of remote FPGA devices for acceleration purposes, via the
concept of a global pool of acceleration resources that can be employed by remote
servers as needed. This approach to disaggregation eliminates the, otherwise, fixed
one-to-one ratio between FPGAs and servers, while the particular FPGA location,
between the server and the network switches, enables the deployment of reconfig-
urable hardware for infrastructure enhancement purposes, e.g., for encryption and
decryption. A prior work by Microsoft, the Catapult architecture [21], relied on a ded-
icated network for inter-FPGA communication, therefore, raising cabling costs and
management requirements. Furthermore, efficient communication among FPGAs
was restricted to a single rack, with software intervention required to establish inter-
rack data transfers.

EU-funded research efforts, such as the Vineyard [12] and the ECOSCALE [17]
projects, aim at improving performance and energy efficiency of compute platforms
by deploying accelerators. The former addresses the problem targeting data center
environments, via the deployment of heterogeneous systems that rely on data-flow
engines and FPGA-based servers, while the latter adopts a holistic approach toward a
heterogeneous hierarchical architecture that deploys accelerators, along with a hybrid
programming environment based on MPI and OpenCL.

The dReDBox approach aims at providing a generic data center architecture
for disaggregation of resources of arbitrary types, such as processors, memories,
and FPGA-based accelerators. Basic blocks, dubbed bricks, construct homoge-
neous pools of resources, e.g., a compute pool comprising multiple compute bricks,
with system software and orchestration tools implementing software-defined virtual
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Fig.3.3 Example of acompute-intensive application and the respective resource allocation schemes
in a current infrastructure (a) and dReDBox (b)

machines which exhibit customized amounts of resources that better serve applica-
tion needs. High-speed, low-latency optical and electrical networks will establish
inter- and intra-tray communication among bricks, respectively. Figures 3.2 and 3.3
illustrate the expected resource allocation schemes, enabled by the dReDBox infras-
tructure, for serving the requirements of memory- and compute-intensive applica-
tions, respectively. The following section presents the proposed dReDBox hardware
architecture.

3.3 System Architecture

This section presents the overall architecture of a dReDBox data center. Multiple
dReDBox racks, interconnected via an appropriate data center network, form a dReD-
Box data center. This overall architecture is shown in Fig. 3.4. The dReDBox archi-
tecture comprises pluggable compute/memory/accelerator modules (termed bricks
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Fig. 3.4 Overview of a dReDBox rack architecture comprising several dBOXes interconnected
with hybrid optical and electrical switching (dAROSM)

in dReDBox terminology) as the minimum field-replaceable units. A single or sets
of multiples of each brick type forms an IT resource pool of the respective type. A
mainboard tray with compatible brick slots and on-board electrical crossbar switch,
flash storage, and baseboard management components is used to support up to 16
bricks. A 2U carrier box (dBOX, visually corresponding from the outside to a con-
ventional, rack-mountable data center server) in turn hosts the mainboard tray and
the intra-tray optical switch modules.

3.3.1 The dBRICK Architecture

The dBRICK is the smallest realization unit in the dReDBox architecture. The term
encompasses general-purpose processing (ACOMPUBRICK), random-access mem-
ory (IMEMBRICK), and application-specific accelerators (JACCELBRICK). As
described above, dBRICKs will be connected to the rest of the system by means of a
tray that, besides connectivity, will also provide the necessary power to each brick.
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Fig. 3.5 Block diagram of a dCOMPUBRICK. The MPSoC integrates an Application Processing
Unit (APU) for software execution. The on-chip programmable logic on the SoC is used to host
transaction glue logic, housekeeping state, and communication logic, required for accessing disag-
gregated resources. The local DMA engines allow the system software to efficiently migrate pages
from remote memory regions to local DDR memory

3.3.1.1 Compute Brick Architecture (dCOMPUBRICK)

The dReDBox compute brick (Fig.3.5) is the main processing block in the system.
It hosts local off-chip memory (DDR4) for low-latency and high-bandwidth instruc-
tion read and read/write data access, as well as Ethernet and PCle ports for data
and system communication and configuration. Also, each dCOMPUBRICK features
QSPI-compatible flash storage (16-32 MB) and a micro-SD card socket (not shown
in Fig. 3.5) to facilitate reset and reconfiguration of the brick in the case of discon-
nection, as well as for debugging purposes.

The compute brick can reach disaggregated resources, such as memory and accel-
erators, via dReDBox-specific glue intellectual property (termed Transaction Glue
Logic) on the data path and communication endpoints implemented on the pro-
grammable logic of the dCOMPUBRICK MPSoC. System interconnection to dis-
aggregated resources occurs via multiple ports leading to circuit-switched tray- and
rack-level interconnects. As also shown in Fig. 3.5, we also experiment with packet-
level system/data interconnection, using Network Interface (NI) and a brick-level
packet switch (also implemented on programmable logic of the dCOMPUBRICK
MPSoC), on top of the inherently circuit-based interconnect substrate. There is poten-
tial value in such an approach, specifically in terms of increasing the connectivity of a
dCOMPUBRICK due to multi-hopping and thus creating an opportunity to increase
the span of resource pools reachable from a single ICOMPUBRICK.
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Fig. 3.6 dMEMBRICK architecture featuring the Xilinx Zynq Ultrascale+ MPSoC (EG version);
the local switch forwards system/application data to the memory brick glue logic, which interfaces
different memory module technologies

3.3.1.2 Memory Brick Architecture ({IMEMBRICK)

Figure 3.6 illustrates the memory brick (dAMEMBRICK) architecture, which is a key
disaggregation feature of dReDBox. It will be used to provide a large and flexible
pool of memory resources, which can be partitioned and (re)distributed among all
processing nodes (and corresponding VMs) in the system. AIMEMBRICKSs can sup-
port multiple links. These links can be used to provide higher aggregate bandwidth,
or can be partitioned by the orchestrator and assigned to different dCOMPUBRICKG,
depending on the resource allocation policy used. This functionality can be used in
two ways. First, the nodes can share the memory space of the IMEMBRICK, imple-
menting essentially a shared memory block (albeit shared among a limited number of
nodes). Second, the orchestrator can also partition the memory of the IMEMBRICK,
creating private partitions for each client. This functionality allows for fine-grained
memory allocation. It also requires translation and protection support in the glue
logic (transaction glue logic block) of the IMEMBRICK.

The glue logic implements memory translation interfaces with the requesting
dCOMPUBRICKS, both of which are coordinated by the orchestrator software.
Besides network encapsulation, the memory translator, managed by orchestrator
tools, controls the possible sharing of the memory space among multiple dCOMPUB-
RICKSs, enabling support for both sharing among and protection between dCOM-
PUBRICKS. The control registers allow the local mapping of external requests to
local addresses to allow more flexible mapping and allocation of memory.
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Fig. 3.7 The dACCELBRICK architecture for accommodating application-specific accelerators

3.3.1.3 Acceleration Brick Architecture (JACCELBRICK)

A dACCELBRICK hosts accelerator modules that can be used to boost application
performance based on a near-data processing scheme [20]; instead of transmitting
data to remote dCOMPUBRICKS, certain calculations can be performed by local
accelerators, thus improving the performance while reducing network utilization.

Figure 3.7 depicts the JACCELBRICK architecture. The dACCELBRICK con-
sists of the dynamic and the static infrastructure. The dynamic infrastructure consists
of a predefined, reconfigurable slot in the PL that hosts hardware accelerators. As
depicted in Fig. 3.7, the accelerator wrapper template integrates a set of registers that
can be accessed by the glue logic to monitor and control (e.g., debug) the accelera-
tor. Moreover, the wrapper provides a set of high-speed transceivers (e.g., GTHs) for
direct communication between the accelerator and other external resources. Finally,
an AXI-compatible port interfaces directly with an AXI DDR controller, allowing
the hardware accelerator to utilize the local PL DDR memory during data processing.
The static infrastructure hosts require modules for (a) supporting dynamic hardware
reconfiguration, (b) interfacing with the hardware accelerator, and (c) establishing
communication with remote dCOMPUBRICKSs. To support hardware reconfigu-
ration, in the current implementation, the local APU executes a thin middleware
responsible for (a) receiving bitstreams from remote dCOMPUBRICKSs (through
the accelerator brick glue logic), (b) storing bitstreams in the APU DDR memory,
and (c) reconfiguring the PL with the required hardware IP via the PCAP port. To
monitor/control the hardware accelerator, the glue logic can read/write the wrap-
per registers. In addition, the glue logic interfaces with the local NI/switch for data
transfers between the dACCELBRICK and remote dCOMPUBRICKSs.
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3.3.2 The dTRAY Architecture

dTRAYs may be composed of arbitrary combinations of the three different types of
dBRICKs detailed above. A dTRAY will have standard 2U size and may contain
up to 16 bricks. It is expected that the number of AMEMBRICKSs will be larger
than the number of dCOMPUBRICKSs and dACCELBRICKSs, since a dCOMPUB-
RICK is expected to access multiple IMEMBRICKSs. The different dBRICKSs are
interconnected among each other within the dTRAY and also with other dBRICKs
from different dTRAYSs. Figure 3.8 illustrates the dTRAY architecture. Four differ-
ent networks, a low-latency high-speed electrical network, an Ethernet network, a
low-latency high-speed optical network, and a PCIe network, will provide connec-
tivity between the different bricks. Accessing remote memory will use both optical
and electrical low-latency, high-speed networks. Accesses to remote memory placed
in a dIMEMBRICK within a dTRAY will be implemented via an electrical circuit
crossbar switch (dABESM in Fig. 3.4 is labeled as High-Speed Electrical Switch) and
will connect directly to the GTH interface ports available on the programmable logic
of the bricks. The dBESM switch will have 160 ports. This is the largest dBESM
switch available on the market today supporting our speed requirements. The latency
will be as low as 0.5ns and the bandwidth per port will be 12 Gbps. This network
will be used for intra-tray memory traffic between different bricks inside the tray.
dBESM will not be used for inter-tray memory traffic due the limitations of the
electrical communication in larger distances (latency). In addition, using electrical
network for intra-tray communication instead of an optical network would not require
signal conversion from electrical to optical and vice versa and thus it will be lower
latency and lower power consumption. The optical network on the dTRAY, providing
inter-tray connectivity, will be implemented with multiple optical switch modules
(dBOSM in dReDBox terminology). Each dBOSM switch will have 24 optical ports.
The latency of the dBOSM optical switch would be around 5ns and the bandwidth
would be in the range of 384 Gbps. dBRICKs will connect to the dBOSM via GTH
interface ports available on the programmable logic of the SoC. The GTH bandwidth
is 16 Gbps. A total of 24 GTH ports will be available in the SoC, with 8 of them used
to connect the SoC to the dBOSM. On a fully populated tray hosting 16 bricks, a
maximum of 256 optical ports may be used to fully interconnect the bricks of each
tray. A Mid-Board Optics (MBO) device mounted on each dBRICK will be used to
convert the electrical signals coming from the GTH ports and aggregate them into
a single-fiber ribbon; the other end of the ribbon will be attached to a local dBOXs
dBOSM optical switch. Each MBO supports up to eight ports. The dBRICKs will
use 10 GTH ports to connect to dBOSM. The number of GTHs per SoC connecting
to the dBOSM is limited by the size of the dBOSM. A 160-port dBOSM can support
a maximum of 10 GTH per dBRICK, given a maximum of 16 dBRICKs on a tray.
An Ethernet (ETH) network will be used for regular network communication and
board management communication (BMC). The bandwidth will be 1Gbps and it
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Fig. 3.8 Sample tray architecture with multiple bricks interconnected through optical and electrical

interconnection networks

will have a hierarchical topology. Bricks on the same tray will interconnect via a
PCle interface. Inter-brick interconnection between bricks on different trays within
the same rack will be provided via a PCle switch, which will exit the tray with one
or more PCle cable connectors. The PCle interface will be used for signaling and
interrupts, as well as for attachment to remote peripherals. This network can also be
used to (re)configure the FPGAs in each SoC.
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3.3.3 The dRACK Architecture

Figure 3.4 introduced the high-level dRACK architecture of the dReDBox architec-
ture. Multiple dTRAY s of different configurations can be placed in the same dRACK.
These dTRAY s can feature different proportions of Compute, Memory, and Accel-
erators. dRACKSs are organized into dCLUSTSs due to a restriction that the largest
dROSM (rack switch) will not be able to interconnect all the optical links from the
dTRAYsS, as well as for facilitating management.

3.4 Software Infrastructure

In this section, the overall software architecture and interactions between the soft-
ware components, enabling the disaggregated nature of the dReDBox platform, are
presented. Software deployment expands to various parts of the system and thus a
hierarchical design is necessary in order to reduce complexity and facilitate imple-
mentation. Figure 3.9 shows the division of software components into three layers
that range from the interaction with the user and the handling of virtual machine
deployment requests, to platform management, to interconnection paths synthesis
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Fig.3.9 The three dReDBox layers for software support. The user layer provides the end-user inter-
face. The resource management layer enables management and monitoring of resources. The oper-
ating system layer on the compute bricks provides hypervisor support to manage virtual machines
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and, eventually, to the necessary extensions of the operating system that enables
support for remote memory access.

3.4.1 User Layer

This is the layer that serves as the interface between the end user and the system,
allowing to reserve virtualized resources and to deploy virtual machines. In addition,
it allows the system administrator to register hardware components and monitor them
via a graphical user interface.

3.4.1.1 IaaS Scheduler

dReDBox takes advantage of OpenStack [2], the de facto standard cloud operating
system, for providing an Infrastructure-as-a-Service platform to provision and man-
age virtual resources. However, various extensions are required in order to comply
with the disaggregated architecture of the dReDBox platform.

OpenStack, through its compute service, Nova [4], employs the scheduler to select
the most qualified host in terms of user requirements for compute and memory capac-
ity. This is achieved by filtering and assigning weights to the list of available hosts.
In traditional cloud computing systems, resources are provided only by the compute
nodes (hosts) and, as a result, scheduling decisions and resource monitoring are lim-
ited by this restriction. To take full advantage of disaggregated resources, e.g., mem-
ory and accelerators, we modify Nova Scheduler by implementing a communication
point with the resource management layer, described below, through a REST APL
We, thus, intersect the workflow of virtual machine scheduling and retrieve a suitable
compute node for the deployment of a user’s virtual machine in order to maximize
node’s utilization. Furthermore, in the case that the amount of allocated memory to
the host does not satisfy user requirements, the resource management layer proceeds
by allocating additional remote memory and establishing the required connections
between the bricks. Besides virtual machine scheduling, we extend Openstack’s web
user interface, Horizon [3], in order to enable the administrator to monitor compute
bricks, deployed virtual machines, and allocated remote resources. Finally, adminis-
trators, through this extended interface, can also register new components (compute
bricks, memory modules, etc.) and the physical connections between them.

3.4.2 Resource Management Layer

This is the layer where the management and monitoring of the availability of the
various system resources occurs. More specifically, the current state of memory and
accelerator allocations is preserved along with the dynamic configurations of the
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hardware components interconnecting bricks (optical switches, electrical crossbars,
etc.).

3.4.2.1 Software-Defined Memory Controller

The core entity of the resource management software is the Software-Defined Mem-
ory (SDM) Controller. It runs as a separate and autonomous service, implemented
in Python programming language and exposes REST APIs for the interaction with
both the TaaS Scheduler and the agents running on compute bricks. Its primary
responsibility is to handle allocation requests for both memory and accelerators.
Memory requests are arriving to the REST interface from the IaaS scheduler, which
is requesting the reservation of resources upon the creation of a virtual machine with
a predefined set of requirements for vCPU cores and memory size, called “flavor”.
The SDM Controller, then, returns a list of the candidate compute bricks that can
satisfy both compute and memory requirements after the consideration of total mem-
ory availability in the system and connection points on compute bricks (transceiver
ports) and switches (switch ports). Allocation algorithms aiming at improving power
savings and/or performance, through low-latency memory accesses, are employed
to select the most suitable memory brick for remote memory allocation.

After the selection of the bricks, where the deployment and the memory allocation
will take place, a subsequent component, part of the SDM Controller, called platform
synthesizer, is employed. Its main function is to maintain an overview of the whole
platform hardware deployment and to drive the orchestration and the dynamic gen-
eration of system interconnect configurations. From there, these configurations are
passed through REST calls to the interfaces managing the electrical crossbars and
the optical circuit switches as well as to the agents running on compute bricks, so
that they can configure the programmable logic and initiate hotplugging of remote
memory segments.

3.4.2.2 Graph Database

The representation of resources and interconnection between them is realized as a
directed graph structure implemented in JanusGraph [1] distributed graph database.
Resources are modeled as vertices, while the edges between them represent phys-
ical connections. Figure 3.10 illustrates a simple example. More specifically, com-
pute/memory/accelerator bricks, as well as transceivers and switch ports are modeled
as vertices. We then use directed edges to connect all the transceivers that are located
on a compute brick (acting as root) to the transceivers located on memory bricks
(acting as sinks). This happens despite the fact that transceivers are bidirectional, but
for the sake of convenience we consider transceivers belonging to compute bricks
as logical output and transceivers belonging to memory and accelerator bricks as
logical input. One or more switching layers exist between transceivers on different
bricks. At the first layer, brick (compute/memory/accelerator) transceiver ports are
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Fig. 3.10 Graph-based resource modeling example for a system that comprises a Compute Brick,
a Memory Brick, two transceivers per brick, and one switching layer. Bricks, Transceivers, and
Switch ports are depicted as vertices

physically connected either to the ports of the electrical crossbar or to the ports of
the optical circuit switch (dBOSM), both of which are residing on the same dBOX
as the brick. Remaining ports of the dBOSM are physically connected to the next
switching layer, which is the rack switch (dAROSM). Switch ports of the same switch
are fully interconnected in order to make the establishment of a circuit between any
of the switch ports possible. Traversing the edges of the graph that originate at a
compute brick and finish at memory bricks allows to retrieve the required paths, i.e.,
the switch ports that need to be configured for the establishment of the connection
between the bricks. After the successful configuration of the components participat-
ing in the interconnection, we increase a usage counter defined as a vertex property
on each one, denoting that it is already part of the allocation and that it should not
be reused for interconnecting additional bricks. Several techniques to avoid loops in
traversals and to improve performance have been used, which, however, are beyond
the scope of this chapter.

3.4.3 Compute Brick Operating System Layer

The compute brick runs the hypervisor, a modified version of the Linux kernel with
KVM modules that add virtual machine management capabilities. In this section, we
describe the main operating system level extensions over a traditional Linux system.
As expected, innovations in comparison with state-of-the-art systems relate to the
management of remote memory and the allocation/deallocation process.

Memory Driver

The memory driver is a collection of hypervisor-level modules supporting dynamic
allocation and deallocation of memory resources to the host operating system running
on a compute brick. The memory driver implements interfaces which configure the
remote memory access, both during guest VM allocation and for dynamic resizing
of remote resources. In the rest of this section, we focus on the specification of the
main subcomponents of the memory driver, namely, memory hotplug and NUMA
extensions.
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Once the required hardware components are set up to connect a compute brick with
one or more remote memory bricks, the hypervisor running on the compute brick
makes the new memory available to its local processes. These processes include
VMs, each living in a distinct QEMU process. In order to make remote memory
available, the hypervisor extends its own physical address space. This extended part
corresponds to the physical addresses that are mapped to remote destinations. Once
these addresses are accessed by the local processor, they are intercepted by the
programmable logic and forwarded to the appropriate destination.

Memory hotplug is a mechanism that was originally developed to introduce
software-side support for server boards that allow to physically plug additional mem-
ory SO-DIMMs at runtime. At insertion of new physical memory, a kernel needs to
be notified about its existence and subsequently to initialize corresponding new page
frames on the additional memory as well as to make them available to new processes.
In memory hotplug terminology, this procedure is referred to as a “hot add”. Simi-
larly, a “hot remove” procedure is triggered via software to allow detaching pages
from a running kernel and to allow the physical removal of memory modules. While
originally developed for the x86 architecture, memory hotplug has been ported so
far to several different architectures, with our implementation focusing on ARM64.
The compute-brick kernel reuses the functionalities provided by memory hotplug
to extend the operating system’s physical memory space by adding new pages to
a running kernel and, similarly, removing them once memory is deallocated from
the brick. Unlike the standard use of memory hotplug in traditional systems, there
is no physical attachment of new hardware in dReDBox; for this reason, both hot
add and hot remove have to be initiated via software in response to remote memory
attach/detach requests.

Although the choice of building remote memory attachment on top of Linux
memory hotplug allows to save considerable effort by reusing existing code and
proven technology, there is a main challenge associated with using it in the context
of the proposed architecture. The hotplug mechanism needs to be well integrated
with programmable logic reconfiguration, in a way that guarantees that physical
addresses as seen by the operating system kernel and content of programmable logic
hardware tables are consistent. Non-uniform Memory Access (NUMA) refers to a
memory design for single-board multiprocessor systems, where CPUs and memory
modules are grouped in nodes. A NUMA node is a logical group of (up to) one CPU
and the memory modules which are mounted on the board physically close (local)
to the processor. Even though a processor can access the memory on any node of
the NUMA system, accessing node-local memory grants significantly better perfor-
mance in terms of latency and throughput, while performance of memory operations
on other nodes depends on the distance of the two nodes involved, which, in tradi-
tional systems, reflects both the physical distance on the board and the architecture of
the board-level memory interconnect between the processor and the memory mod-
ule. When a new process is started on a processor, the default memory allocation
allocates memory for that process from the local NUMA node. This is based on the
assumption that the process will run on the local node and so all memory accesses
should happen on the local node in order to avoid the lower latency nodes. This
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approach works well when dealing with small applications. However, large applica-
tions that require more processors or more memory than the local node has to offer
will be allocated memory from nonlocal NUMA nodes. With time, memory allo-
cations can become unbalanced, i.e., a process scheduled on a NUMA node could
spend most of its memory access-time on nonlocal NUMA nodes. To mitigate this
phenomenon, the Linux kernel implements a periodic NUMA balancing routine.
NUMA balancing scans the address space of tasks and unmaps the translation to
physical address space in order to trap future page faults. When handling a page
fault, it detects if pages are properly placed or if they should be migrated to a node
local to the CPU where the task is running. NUMA extensions of the Linux Kernel
are exploited by our architecture as a means to represent remote memory modules
as distinct NUMA nodes: we group remote memory chunks allocated to the brick
into one or more CPU-less NUMA nodes. Each of these nodes has its own distance
(latency) characterization, reflecting the different latency classes of remote memory
allocations (e.g., tray-local, rack-local, or inter-rack). We develop a framework to
dynamically provide the Linux Kernel with an overview of the available memory
every time new modules are hot plugged to the local system and also provide the
distance (latency) between CPUs and allocated remote memory. This information
facilitates the development and extension of current task placement and memory
allocation techniques within the Linux Kernel for the effective scheduling of VMs
to CPUs and for improved locality in memory allocation.

3.5 Simulating Disaggregated Memory

Disaggregated memory is of paramount importance to the approach of disaggregation
in data centers, and the capacity to analyze and understand its effect on performance is
a prerequisite for the efficient mapping of applications to such architectures. The cur-
rent section describes a simulation tool for disaggregated memory, dubbed DIMEM
Simulator [5, 19] (Disaggregated Memory Simulator), which facilitates the explo-
ration of alternative execution scenarios of typical HPC and cloud applications on
shared memory architectures, e.g., Raytrace and Data Caching.

DiMEM Simulator relies on Intel’s PIN framework [16] for instrumentation and
application analysis purposes, while DRAMSim?2 [22] is employed for memory sim-
ulations. Figure 3.11 depicts a simplistic view of DIMEM Simulator. On the front end,
DiMEM Simulator conducts functional simulations of the TLB and the cache hier-
archy, and generates a trace file of accesses to main memory. The Allcache pin tool
(developed by Klauser [16]) for functional simulations of instruction/data TLB and
the cache hierarchy served as the basis in order to support multithreading and hyper-
threading. Instrumentation is conducted at the instruction granularity level in order to
detect memory accesses that are then analyzed to distinguish between cache hits and
misses. The aim is to determine actual accesses to main memory, which inevitably
follow the LLC misses. DIMEM Simulator maintains a list of records for every access
to main memory, which is used to generate the required memory trace file.
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Fig. 3.11 A simplistic illustration of the DIMEM simulation tool for disaggregated memory

On the back end, DRAMSim?2 is deployed to analyze the generated memory trace
file. A trace file example for DRAMSim2 is shown below, with the first column
providing a virtual address, followed by the type of instruction and the cycle it was
issued.

0x7£64768732d0 P_FETCH 1

0x7ffdl6a5a538 P_MEM_WR 8
0x7£6476876a40 P_FETCH 12
0x7£6476a94e70 P_MEM_RD 61
0x7£6476a95000 P_MEM_RD 79

Once a certain amount of memory traces is generated, the so-called window, a
penalty-based scoring scheme is employed to determine the cycle each instruction is
accessing memory. Sorting instructions by the memory access cycle facilitates sim-
ulations in multithreaded execution environments. Given the two types of memory
that DIMEM is simulating, i.e., local and remote (disaggregated), two DRAMSim2
instances are employed. The second instance is required to model remote memory
correctly, given the additional latency of the interconnect.

To evaluate DIMEM Simulator, a variety of HPC and cloud benchmarks were
employed. HPC benchmarks involved Barnes, Volrend, and Raytrace of the Splash-
3 benchmark suite [23], and FluidAnimate of the PARSEC benchmark suite [6]. The
Memcached-based Data Caching benchmark of the CloudSuite [11, 18] benchmark
suite for cloud services was employed as the cloud benchmark. All benchmarks
were evaluated based on a series of processor configurations that were modeled after
modern, high-end microprocessor architectures. Four different memory allocation
schemes were employed, with an increasing percentage of remote memory, i.e., 0,
25, 50, and 75%, as well as varying latency for remote accesses, ranging between
500 and 2,000 ns.

Figures3.12 and 3.13 illustrate Raytrace and Data Caching Workload profiles
based on LLC misses measured in Misses per Kilo Instructions (MPKI) per win-
dow. As can be observed in the figures, the workload of the Raytrace application
exhibits significant variations over time, whereas the Data Caching one remains
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Fig. 3.12 Workload profile for Raytrace (Splash-3 benchmark suite [23]), measured as the number
of missed per kilo instruction (MPKI) per window
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Fig. 3.13 Workload profile for Data Caching (CloudSuite benchmark suite [18]), measured as the
number of missed per kilo instruction (MPKI) per window

largely constant. This directs sampling accordingly in order to avoid prohibitively
large evaluation times.

Figure3.14 illustrates the effect of disaggregated memory on application exe-
cution in terms of induced overhead/slowdown and varying effective bandwidth as
disaggregated latency increases from 500 and up to 2,000ns. A RISC-based CPU
with 4 GB of total memory is employed in all cases, while the percentage of remote
memory in the system varies from 25 to 75%. As expected, increasing disaggre-
gated latency reduces the effective bandwidth of the remote memory equivalently in
all three remote-memory-usage scenarios, i.e., 25% (Fig.3.14b), 50% (Fig.3.14d),
and 75% (Fig.3.14f). As the percentage of remote memory in the system increases,
the negative effect of increased remote memory latency on application performance
intensifies, as observed in Fig.3.14a, c, e. As can be observed in the figures, the
increased access latency to remote memory reduces overall performance. However,
the results suggest that maintaining latency to disaggregated memory below 1,000
ns yields acceptable performance deterioration, allowing to benefit from the overall
disaggregated approach.
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Fig. 3.14 The effect of disaggregated memory on application execution in terms of over-
head/slowdown and effective memory bandwidth for varying disaggregated latency values
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3.6 Conclusion

The dReDBox project aims at achieving fine-grained resource disaggregation, with
function blocks representing the basic units for creating virtual machines. This can
lead to fully configurable data center boxes that exhibit the capacity to better serve
application requirements, by quantitatively adapting resources to application work-
load profiles. Compute-intensive applications, for instance, will induce the allocation
of increased amounts of CPU nodes, whereas memory-intensive applications will
trade processing power for memory and storage resources. Evidently, the success of
this approach relies on eliminating disaggregation-induced overheads at all levels of
the system design process, in order to virtually reduce the physical distance among
resources in terms of latency and bandwidth.

Acknowledgements This work was supported in part by EU H2020 ICT project dRedBox, contract
#687632.
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Chapter 4 ®)
The Green Computing Continuum: oo
The OPERA Perspective

A. Scionti, O. Terzo, P. Ruiu, G. Giordanengo, S. Ciccia, G. Urlini,
J. Nider, M. Rapoport, C. Petrie, R. Chamberlain, G. Renaud,
D. Tsafrir, I. Yaniv and D. Harryvan

4.1 Introduction

More powerful and smart computing systems are made possible by the continuous
advancements in silicon technology. Embedded systems evolved into modern Cyber-
Physical Systems (CPS): smart connected systems that are powerful enough to enable
(near) real-time interactions with the surrounding environment. For this reason, CPS
are at the basis of implementing new services, albeit they generate an enormous
amount of data, thanks to their capability of sensing/acting on the environment where
they are deployed. Cloud computing, or simply Cloud, is the set of hardware and
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software technologies used to process and analyse such amount of data, so that it
becomes possible to respond to the societal and industrial needs through innovative
services. Also, Cloud technologies enables CPS to retrieve useful information to
react to the changes in the environment where they operate. However, such welcome
capabilities are today counterbalanced by the high power consumption and energy
inefficiencies of the processing technologies that traditionally power data center
(DC) servers. Generally, DCs have thousands of running servers arranged in multiple
racks. Maintaining these infrastructures has high costs, and Cloud providers pay 40—
50% of their total expenses as power bills [1]. The critical point of these large-scale
infrastructures is represented by their large inefficiency: the average server utilisation
remains between 10 and 50% in most of the DCs [2, 3] and further, idle servers can
consume up to 65% of their peak power [2, 4, 5]. New architectural solutions are
thus required to provide more responsiveness, scalability, and energy efficiency.
One way of ameliorating the situation is to use virtualization techniques [6], which
increase server utilisation by replicating many times the behaviour of a physical
machine, by means of the abstraction of the main hardware features. Thanks to
virtualization, servers with different resources can dynamically host different “virtual
machines” (VMs). Hypervisors, i.e. software devoted to control VMs during their
lifetime, play a key role in scheduling the allocation of VMs to the physical servers.
Also, hypervisors consume computing resources for achieving their goals, which in
turn translates into power consumption. In addition, traditional virtualization systems
put large pressure on the servers’ memory subsystem, thus further contributing to
increase power consumption, and limiting the capability of the hypervisors to pack a
large number of VMs on the servers. Cloud paradigm allows acquiring and releasing
resources dynamically over time, making the problem of allocating computing and
storage resources even more complex. The stochastic nature of Cloud workloads,
along with blind resource allocation policies (i.e. resources are usually provisioned
to their peak usage) employed by most DCs, lead to poor resource utilisation [7, 8].
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Thus, there is a demand for more efficient resource allocation mechanisms, capable
of exploiting the large architectural heterogeneity available in modern DCs, as well as
capable of leveraging on less memory-hungry virtualization systems. Furthermore,
such allocation strategy should be helpful in reducing the workload imbalance and
also to optimise resource utilisation.

Tackling these challenges, the OPERA project [9] aims at investigating on the inte-
gration of high-performance, low-power processing elements within highly modular
and scalable architectures. OPERA realises that heterogeneity is a key element for
achieving new levels of energy efficiency and computational capabilities. To this end,
solutions delivered in the project widely leverage on reconfigurable devices (field-
programmable gate arrays—FPGAs) and specialised hardware modules to maximise
performance and reduce power consumption. Also, improving the efficiency of the
virtualization layer represents one of the main objectives of the OPERA project.
Improving the way memory is consumed by (virtualized) Cloud applications, adopt-
ing more lightweight technologies (e.g., Linux containerisation), and better sup-
porting allocation of heterogeneous computing resources, OPERA aims at greatly
reducing the overall energy consumption of next-generation Cloud infrastructures,
as well as of remotely connected CPS. Specifically, the following objectives have
been identified:

e Exploiting heterogeneity through the adoption of different multicore processor
architectures (i.e. ARM, X86_64, and POWER), along with specialised accelera-
tors based on reconfigurable devices (FPGAS);

e Automatically splitting workloads in to a set of independent software modules
which can be executed as “microservices” on specific target devices, in order to
improve the overall energy efficiency of the Cloud infrastructure;

e Leveraging on direct optical links and the Coherent Accelerator Processor Inter-
face (CAPI) to increase scalability and maximise the performance of the Cloud
infrastructure;

e Designing a scalable, modular, and standardised server enclosure (also referred to
as “Data Center-in-a-Box”’) supporting tens to hundreds of processing cores (even
with different architectures) in a very compact form factor;

e Defining and integrating appropriate metrics with a more holistic approach to
continuously monitor the efficiency of the Cloud computing platform;

e Exploiting ultra-low power multi-/many-cores processors with a dedicated energy-
aware instruction set architecture (ISA) to improve CPS processing capabilities in
the context of computer vision applications;

e Exploiting reconfiguration and adaptability of the radio communication subsystem
to enhance the CPS efficiency;

e Introducing off-loading services (possibly accelerated through FPGA boards) to
enable remote CPS accessing larger computing capabilities for critical tasks.

The project, spanning over 3years, is coordinated by STMicroelectronics, along
with the support of Istituto Superiore Mario Boella—ISMB (technical coordinator).
The consortium involves also industrial partners, as well as public bodies and aca-
demic institutions (HPE, Nallatech, IBM, Teseo—Clemessy, Certios, CSI Piemonte,
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Le Département de Isere, Neavia technologies, Technion) to successfully achieve the
above-mentioned objectives.

In this chapter, we discuss the set of technologies, architectural elements, and
their integration in the OPERA solution, which are the results of the research activity
carried out in the project. Specifically, the design, and integration of a high-density,
highly scalable, modular, server equipped with acceleration boards is presented,
as well as the capability of integrating, at the DC level, HPC-oriented machines
equipped with POWER processors and FPGA accelerators. The integration of an
energy-aware Cloud orchestration software is analysed, along with the analysis of
the application impact on the memory subsystem, which is at the basis of a more
energy-aware optimisation of the running applications. Finally, the extension of the
Cloud infrastructure to include a new smart and energy-efficient CPS is presented:
thanks to network connections, a mechanism for offloading some of the computation
on the Cloud back-end is discussed as well.

The rest of the chapter is organised as follows. Section4.2 introduces state of
the art related works; Sect.4.3 gives an overview of Cloud paradigm evolution. In
Sects.4.4 and 4.5, we detail OPERA infrastructure resources, spanning from DC
servers to remote CPS. Next, in Sect.4.6, we describe the three real-life application
scenarios where OPERA solutions is successfully applied. Finally, we conclude the
presented chapter in Sect.4.7.

4.2 Related Works

The OPERA project exploits many different technologies with the ambition of inte-
grating them into a more (energy) efficient platform, serving as the basis for creating
the next-generation Cloud infrastructures.

Improving energy efficiency in Cloud domain has seen several approaches being
proposed in recent years [10]. Most of the proposed approaches aim at improving
resource allocation strategies, targeting a more efficient use of the computing and
storage resource, which, in turn, translates in reducing energy costs. Various algo-
rithms have been used to implement smarter resource allocation strategies, including:
best fit [11], first fit [12], constraint satisfaction problem (CSP) [13], control the-
ory [14], game theory [15], genetic algorithms (GA) and their variants [16], queuing
model [17] and also various other heuristics [18, 19]. It is interesting to note that
greedy algorithms (e.g. best fit and first fit) are employed in commercial products,
such as the distributed resource scheduler (DRS) tool from VMware [20]. As an
emerging architectural style in developing Cloud applications, splitting them in to a
set of independent microservices, it becomes possible to control their allocation on
the Cloud resources with a fine-grain resolution with regards to traditional monolithic
services, as well as it becomes possible to predict their incoming.

Resource allocation can be conveniently formalised as a Bin Packing Problem
(BPP), which is a NP-hard optimisation problem. Generally, solving large instances
of BPP requires the adoption of heuristics. Among the various, evolutionary-based
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algorithms, such as Particle Swarm Optimization (PSO), provide very promising
results. Liu and Wang [21] proposed a hybrid PSO algorithm by combining the
standard PSO technique with the simulated annealing (SA) to improve the iterations
of the PSO algorithm. In [22], the authors introduced a mutation mechanism and
a self-adapting inertia weight method to the standard PSO to improve convergence
speed and efficiency. Zhang et al. [23] describe a hierarchical PSO-based application
scheduling algorithm for Cloud, to minimise both the load imbalance and the inter-
network communication cost.

Time series-based prediction has been also used as a mean for foreseeing Cloud
workloads in advance, so that it is possible to reserve and optimally allocate DC
resources. A comprehensive set of literature is available in this context. A simplified
method for modelling univariate time series is given by autoregressive (AR) model.
Combined with the moving average (MA), it leads to the well-known ARMA model.
In [24], authors proposed a ARMA-based framework for characterising and forecast-
ing the daily access patterns of YouTube videos. Tirado et al. [25] present a workload
forecasting AR-based model that captures trends and seasonal patterns. Prediction
was used to improve the server utilisation and load imbalance by replicating and
consolidating resources. Other works proposed AR-derived models to dynamically
optimise the use of server resources and improve energy efficiency [26]. Similarly,
the autoregressive integrated moving average (ARIMA) and autoregressive fraction-
ally integrated moving average (ARFIMA) can be used to capture non-stationary
behaviours in the time series (i.e. it performs better in describing mean, variance,
autocorrelation of time series, which in turn change over time), and to extract sta-
tistical self-similar (or long memory) patterns embedded in the data sets. To this
end, several research works have been presented [27, 28]. On the other hand, it is
also a common practice for the Cloud providers to automatically provisioning vir-
tual machines (VMs) via a dynamic scaling algorithm, without using any predictive
method [29, 30].

Heterogeneity (including GPGPUs, FPGAs, Intel XeonPhi, many-cores) have
been popularised in HPC domain to accelerate computations and to lower power
consumption costs of computing infrastructures. Thanks to different architectural
features of the processing elements, heterogeneous solutions allow to better adapt to
the workload characteristics. However, they still are not common in the Cloud com-
puting domain [31], where architectural homogeneity helps to reduce the overhead
and costs of managing large infrastructures. Although, Cloud providers started offer-
ing instances running on powerful GPGPUs (e.g. Amazon AWS G2 and P2 instances,
Microsoft Azure N-type instances), the access to FPGA-based images is still com-
plex and very limited, beacause of the difficulties in programming such devices.
Some steps towards easing the programming of FPGAs has been done with language
extensions and frameworks supporting the translation of code written with popular
high-level languages (C/C++) into synthesisable ones (VHDL/Verilog). Examples
of such compilation frameworks are represented by LegUp [32], ROCCC [33] and
OpenCL [34]. However, the lack of precise control of the placement and routing of
FPGA resources, generally still demands for manual optimisation of the final design.
Despite many challenges to address, some works tried to reverse the situation, explic-
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itly targeting Cloud workloads [35-37]. However, such works only provide a glimpse
of what future evolution of programming languages and compilers will enable (in
fact, most of these works strongly rely on an handmade design optimisation phase).

Cloud-connected smart sensors (also referred to as Cyber-Physical Systems) are
often demanded for processing intensive tasks to avoid large data transfer to the Cloud
back-end. To this end, CPS are equipped with high-performance processors, which
run in an ultra-low power envelop. Examples of such design style are PULPino [38],
an ultra-low power architecture targeting IoT domain, and the ReISC core architec-
ture [39]. To achieve high-performance within an ultra-low power envelope, CPS pro-
cessors exploit a mix of energy-optimised technologies, including an energy-aware
instruction set architecture (ISA). Despite manufacturing technology and micro-
architectural improvements, many application scenarios require computational capa-
bilities (e.g. real-time elaboration of high-resolution streaming videos) that are far
from that offered by a CPS. In that case, offloading computational-intensive tasks
to a remote Cloud back-end becomes the only feasible solution. RAPID EU-funded
project [40] aims at accelerating the capabilities of low-power embedded devices by
taking advantage of high-performance accelerators and high-bandwidth networks.
Specifically, compute- or storage-intensive tasks can be seamlessly offloaded from
the low-power devices to more powerful heterogeneous accelerators. For instance,
such mechanism has been successfully used to enable Android devices with no GPU
support to run GPU-aware kernels, by migrating their execution on remote servers
equipped with high-end GPGPUs [41]. Communication capabilities (both wired and
wireless) are at the basis of the implementation of effective offloading services, and
remain largely exploited in CPS deployed in unmanned contexts. Adapting the com-
munication subsystem to the physical channel characteristics [42] greatly help the
deployment of CPS also in rural areas, as well as greatly contributes to save energy
on the battery.

4.3 The Green Computing Continuum

Cloud computing (or simply Cloud) provides a way to access computing resources
without hosting them on premise. The level of abstraction at which computing
resources are accessed (i.e. the way Cloud users interact with the infrastructure) deter-
mines the adopted Cloud service model. Three main service models exist: Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service
(TaaS). OPERA aims at improving the way services and resources are managed
within a DC, thus it mostly considers the IaaS model. At this level of abstraction (i.e.
users may deal with the low-level infrastructure, by requesting virtual machines and
managing their interconnections) resource allocation problem emerges as one of the
main challenges to address. In addition, recently we witnessed to the broadening of
Cloud infrastructures, beyond their traditional concept. With the fast growth of the
number of small embedded devices connected to Internet [43], Cloud providers need
to support them anywhere at any time. The infrastructural Cloud support helps to
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integrate Cloudlets, Fog computing and the “Cloudification” of the Internet of Things
(IoT) within traditional infrastructures (see Fig.4.1). Supporting such growing set
of connected devices exacerbates the need for a more efficient way of managing and
controlling resources within large-scale computing systems.

Nowadays, mobile computing has gained a momentum thanks to the progress in
lowering power consumption of embedded hardware platforms. The higher the com-
puting capabilities are, the more complex the applications running become. Thus,
although the improvements in the capabilities of such platforms, Cloud becomes a
choice of worth in supporting the remote execution of computing-intensive jobs every
time the mobile device is not able to provide enough computational resources. To this
purpose, Cloud infrastructures began to reduce the latency for processing jobs and to
support (near) real-time services. The adopted solutions, termed as Cloudlets [44], are
trusted, capable systems co-located with the point-of-presence, and equipped with a
fixed number of powerful servers. Using Cloudlets, users can instantiate, on-demand,
custom VMs on a cluster of commodity machines, without the need for accessing tra-
ditional Cloud services. Fog computing is another emerging paradigm [45]. Here, the
idea is to extend the Cloud infrastructure perimeter, by transferring and processing
jobs within the network, aiming at reducing the access latency and improving QoS.
Fog computing exploits the “virtualization” of the network equipment: router and
switch functionalities are melded with more general-purpose processing capabilities
exposed through specific services [46]. The result of such transformation is a set of
new technologies, such as software-defined networking (SDN) and network function
virtualization (NFV) [47], which are emerging as a front runner to increase network
scalability and to optimise infrastructural costs. SDN and NVF are also two examples
of Cloud infrastructure elements that can strongly benefit from more efficient, high-
density, computing machines (e.g. FPGA devices represents an optimal substrate
for accelerating latency-sensitive network operations). Specifically, SDN provides a
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centralised, programmable network framework that can dynamically provision a vir-
tualized server and storage infrastructure in a DC. SDN consists of SDN controllers
(for a centralised view of the overall network), southbound APIs (for communicat-
ing with the switches and routers) and northbound APIs (to communicate with the
applications and the business logic). NFV helps to run network functions, such as net-
work address translation (NAT) and firewall services as a piece of software. Another
extension of the traditional Cloud infrastructures is represented by the Mobile Edge
Computing (MEC) [48] paradigm. Here, the aim is to provide a dynamic content
optimisation and also to improve the quality of user experience, by leveraging radio
access networks (RAN5) to reduce latency and increasing bandwidth.

The lowering cost of manufacturing technology led to integrate large comput-
ing capabilities, sensors and actuators within the same systems, unleashing the full
potential of embedded systems as “cyber-physical systems” (CPS). The large avail-
ability of smart sensors/actuators and the corresponding emerging of the Internet
of Things (IoT) paradigm [49], makes Cloud infrastructures necessary to store and
process the enormous amount of collected data. Cloud-IoT applications are quite dif-
ferent compared to the traditional Cloud applications and services (due to a diverse
set of network protocols, and the integration of specialised hardware and software
solutions). From this standpoint, Cloud-based IoT platforms are a conglomeration
of APIs and machine-to-machine communication protocols, such as REST, Web-
Sockets, and IoT-specific ones (e.g. message queuing telemetry transport—MQTT,
constrained application protocol—CoAP).

4.3.1 Energy Efficiency Perspective

Energy efficiency became an important topic for continuing to sustain the adoption
of Cloud and IT technologies. Europe, as other countries, defined the objectives
that must be achieved to make Cloud and IT technologies “green”. To drive energy
efficiency in the EU member states, targets have been detailed in the energy efficiency
directive, EED [50]. This energy efficiency directive establishes a set of binding
measures to help the EU reaching its energy efficiency target by 2020. Under this
directive, all EU countries are required to use energy more efficiently at all stages of
the energy chain, from its production to its final consumption. Interestingly, energy
intensity in EU industry decreased by almost 19% between 2001 and 2011, while the
increased use of IT and Cloud services by both individuals as well as organisations
has resulted in a marked increase in data center energy use [51]. It is important to
note that to decrease final energy use, either total production (output) must decrease
and/or efficiency increases must outpace the increase in production.

Although the term “energy efficiency” (E,) is used often in everyday life, the term
warrants careful definition. In mathematical form, all energy efficiency metrics are
expressed as

4.1)
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where F,, defines the functional unit (i.e. work done), and E,,; represents the energy
used to produce the output results. For the sake of correctly modelling energy effi-
ciency, there are, however, many possibilities for describing (i) energy consumption,
(ii) system boundaries, and (iii) functional units (this is mostly represented by the
type of workload executed) and test conditions.

Looking at the energy consumption of DC equipment, to get an estimate, one
must turn to one or more publically available data sources. These data sources are
collected as LCI and LCA databases. LCI databases provide Life Cycle Inventory
datasets, while LCA databases include in addition Life Cycle Impact Assessments
methods. In environmental impact studies, energy is most often expressed as primary
energy (PE). Aside from the grid conversion, LCA studies add other external factors,
such as data center cooling, into the PE calculation.

System boundaries are necessary to define in order to correctly calculate the energy
efficiency of the system under evaluation. It implies to consider only the elements that
actually influence the energy behaviour of the system. Further, workload composition
becomes crucial to analyse the efficiency of DC equipment. To this standpoint, three
main hierarchical levels can be defined. System boundary: this level incorporates
all the equipment used in delivery of a service, including end-user equipment and
transport networks; Equipment boundary: this level is a limitation of the system level,
focused on a single machine or a tightly knit cluster of machines delivering certain
functionalities (both the user and networking are excluded in this view); Component
boundary: this level is a limitation of the equipment level focused on an element
or component inside a machine or the cluster that performs a distinct function (a
component view is not limited to a hardware component but can also be a software
component).

Workload greatly influences the behaviour of the hardware units, which in turn
determines their consumed energy. To demonstrate the effect of workload, it is useful
to examine the results coming from the SPECpower benchmark. Interestingly, low
server utilisation is common, even in the case of high-load conditions. Similar out-
comes remain valid for the Amazon EC2 service [52], where large fluctuations are
present, but the long- term average utilisation is in the range of 10-15%. In this range,
even with an aggressive power management, servers do not perform efficiently. Not
only workload volume influences the efficiency of computations, but also its compo-
sition. Different software components (possibly using different technologies, such
as Java virtual machines, compiled languages, etc.) perform differently on a given
machine, depending on the other software concurrently running. The influence of
workload composition is harder to quantify than that of the workload volume. The
issue being that what is measurable in a server is the power drawn along with the
application output. Varying the workload composition modifies the application out-
put, making comparison of results impossible. However, such differentiation can be
turned into an advantage if heterogeneous hardware elements are used. In this case,
it becomes possible to search for an advantage in binding different workload compo-
nents on different hardware elements, for better performance and energy reduction.

OPERA aims at providing a substantial improvement of the energy efficiency
of a DC, by considering workloads made of software components used to deliver
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end-user services (e.g. access to remote virtual desktops, SaaS-based applications,
offloading services, etc.). The influence of the workload volume and composition on
the computing elements is also investigated to better tune the architectural design, as
well as the adopted technologies. The boundary is represented by the set of machines
that perform computations, including also networking equipment and remote CPS
(Cloud end-nodes). Thanks to the wide use of heterogeneous platforms, OPERA
aims at greatly improving overall energy efficiency.

4.4 Heterogeneous Data Centers

Cloud computing paradigm is based on the availability of a large set of compute,
storage and networking resources, which are in general heterogeneous in nature.

Unlike in the past, the growing demand for more energy-aware systems, is leading
data centers to rapidly embrace different processor architectures and dedicated accel-
erators. The former are well represented by ARM-based systems, while the latter are
represented by GPGPUs, with a smaller presence of FPGA devices. In OPERA, this
practice is further extended by introducing also POWER-based systems. This is a
platform originally intended for high-performance computing machines; however,
with the emerging of Cloud services supporting HPC-oriented and scientific appli-
cations, the availability of dedicated computing nodes becomes more valuable. It is
worth to highlight that heterogeneity in data centers extends in several dimensions,
not only across architectures: machines configured in the same way and using the
same CPU architecture can be still different from each other since CPUs families
change the features over generations (e.g. the most recent Intel Xeon processors
support the AVX-512 instruction set extension, which was not available on previous
models), as well as the supported clock frequencies.

Figure 4.2 depicts the conceptual representation of such modern “heterogeneous”
data center, highlighting the presence of software stack devoted to management.
Looking at the internal organisation of modern chips, one can see the presence of
multiple computing cores, along with dedicated interconnections and accelerating
IPs (i.e. circuits providing specific functionalities in hardware). One of the main tasks
in governing such kind of infrastructures regards the allocation of resources for the
different applications. In order to be “efficient”, such allocation should consider sev-
eral factors to get the optimal allocation decision. To this purpose, in OPERA, power
consumption of each platform and the relative load are considered good estimators
of the relative energy consumption.

4.4.1 Accelerated Servers

Figure4.3 depicts the organisation of the heterogeneous DC as envisioned by
OPERA. Hardware differentiation provides the proper computational power required
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tasks

by complex tasks running on top of diverse frameworks (e.g. Apache Hadoop, Apache
Spark, MPI, etc.).

To this end, OPERA integrates low-power and high-performance processor archi-
tectures (ARM, X86_64 and POWER) into highly dense and interconnected server
modules. Developed enclosures (HPE Moonshot) makes it possible to integrate hun-
dreds of different processing elements by exploiting a microserver design: a sin-
gle cartridge contains the specific processing element (i.e. CPU or DSP), the main
memory and the storage. Each cartridge can be coupled with a dedicated acceler-
ator (i.e. GPGPU, FPGA-based board, many-core device). Besides Cloud-specific
applications, other algorithms may largely benefit from FPGA acceleration, such as
network communication functions and protocols.
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Effective usage of hardware components depends on the easiness in accessing
their functionalities at the software level. To this end, in OPERA, FPGA accelerators
are wrapped by an optimised Board Support Package (BSP) that deals with the low-
level details of the FPGA architecture and peripherals (e.g. PCle, CAPI, SerDes 1/O,
SDRAM memory, etc.), and that fits into the high-level OpenCL toolflow [53]. This
allows the application (or a portion) to be represented as highly portable kernels, that
Cloud orchestrator can decide at the last minute eventually to off-load from software
running on the host processor to silicon gates. Furthermore, such designed accelera-
tors furnish the DC servers with PCle and Coherent Accelerator Processor Interface
(CAP]) attached programmable logic. With the CAPI [54], the FPGA accelerator
appears as a coherent CPU peer over the I/O physical interface, thus accessing a
homogeneous virtual address space spanning the CPU and the accelerator, as well as
a hardware-managed caching system. The advantages are clear: a shorter software
path length is required compared to the traditional I/O model. The interface is imple-
mented through two hardware sub-blocks: the Power Service Layer (PSL), and the
Accelerator Functional Unit (AFU), i.e. the silicon block implementing the accel-
eration logic. The PSL block contains the hardware resources that maintain cache
coherency, acting as a bridge between the AFU and the main CPU. An Interrupt
Source Layer (ISL) is available in order to create an access point to the AFU for the
software layer. On the CPU side, the Coherent Attached Processor Proxy (CAPP)
acts as a gateway for serving the requests coming from and directed to the external
AFU. Although the implementation of PSL and ISL units consumes resources on the
FPGA (i.e. Flip-Flops, LUTs, RAM blocks, etc.), the adoption of high-end reconfig-
urable devices leaves enough space to implement complex hardware logic modules.
In this context, OPERA leverages on the last Intel products (Arria 10 System-on-
Chip-SoC [55]), which supports IEEE-754 Floating Point arithmetic through newly
integrated DSPs. Beside pure reconfigurable logic, the Intel Arria 10 SoC features
the second-generation dual-core ARM Cortex-A9 MPCore processor, which is inte-
grated into the hard processor system (HPS) to obtain more performance, flexibility,
and security with respect to the previous generation or equivalent soft-cores. On-
die ARM cores allow the seamless integration of the reconfigurable logic with a
general-purpose elaboration pipeline, and in a broader perspective its integration in
the complex DC architecture.

Scalability of the platform is further ensured by the adoption of on-board opti-
cal links. OPERA opted for standard Quad Small Form-factor Pluggable (QSFP)
modules that permit up to 40 Gb/s of bandwidth, physically configured either as a
single 40 Gb/s link or split into four independent 10 Gb/s links. This unprecedented
level of flexibility allows for supporting a wide range of topologies. The hardware
design issues and constraints are abstracted away and automatically handled by the
Intel OpenCL compiler, leaving the software programmer to deal only with specific
algorithms of interest. The compiler allows optimising high-level code (e.g. C-based
code) enabling OpenCL channels (an OpenCL language construct) to be used for
kernel-to-kernel or I/O-to-kernel data transfers at high bandwidth and low latency.
Channels are also used to implement an application program interface (API) intended
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for the host to communicate with the hardware accelerator, generally mapping the
PCI Express interconnect.

4.4.2 Workload Decomposition

To take full advantage of hardware specialisation, a mechanism to automatically
assign tasks must be put in place. To this purpose, OPERA mostly exploits the
microservice model. It has recently emerged in the Cloud community as a develop-
ment style, which allows building applications composed by several small indepen-
dent but interconnected software modules [56]. Each module runs its own processes
and communicates with others by means of a lightweight mechanism, typically con-
sisting of an HTTP-based REST API, resulting in an asynchronous, shared-nothing,
highly scalable software architecture. In order to automatise the deployment phase
of such microservices-based Cloud applications, an ad-hoc “descriptor” is used. It
allows the abstraction of the different software components and their relationships.
To this end, OPERA leverages on the OASIS TOSCA [57] standard (Topology and
Orchestration Specification for Cloud Applications), which enables the portability of
Cloud applications and services across different platforms, and that has recently been
extended to support Linux containers. TOSCA provides meta-model expressed with
an XML-based language. It consists of two main parts: (i) a topology template—a
graph in which typed nodes represent service’s components and typed relationships
connect nodes following a specific topology; and (ii) plans—workflows used to
describe managing concerns (Fig. 4.4).

LOOKUP TABLE FLAVOUR DESCRIPTION 3

TAG FLAVOUR_1 | FLAVOUR_2 FLAVOUR | CPU_TYPE| POWER MEMORY | STORAGE SPEED 3
tag_1 flv_id_1 flv_id_3 flv_id_1 X86 400W 32G 4T 2.5GHz i
tag_2 flv_id_2 flv_id_4 flv_id_2 POWER 300W 128G 4T 3.2GHz i
flv_id_k 3

i
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RunTime
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“\ Data Center (DC)
“ DC resources machines
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Fig. 4.4 The deployment chain used in OPERA to allocate resources within the heterogeneous data
center. On top, the knowledge base—KB is depicted (table with list of nodes is not represented)
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In OPERA, the flexibility offered by the TOSCA application descriptor is
exploited to create hooks that are used to correctly assign microservices to the most
suitable hardware resource for their execution. Although, it is our intention to design
and develop a solution that can be used in a different context (i.e. not locked to a spe-
cific vendor existing platform), OPERA selected one popular platform as a reference:
the OpenStack Cloud orchestration system. With regards to the integration of addi-
tional components to the OpenStack system, our solution takes into consideration a
2-steps allocation strategy:

e Phase—1: deploy the application components on the most suitable platform (i.e.
by choosing the better processor architecture, amount of memory, storage space,
etc.), with the aim of maximising the energy efficiency;

e Phase-2: periodically rescheduling (i.e. migrating) the application components on
the most suitable platform if different load/efficiency conditions arise. For instance,
a web front-end previously running on an ARM-based server can be moved on a
X86_64 machine if the load of the ARM machine exceeded a threshold and/or the
number of requests to the front-end increased.

In this regard, we refer to phase—1 as a static deployment action, while we talk of
dynamic (re-)scheduling of the application components in phase—2. To perform such
actions, the Cloud orchestrator needs to match microservices with the most suitable
hardware resources based on the indication collected in a Knowledge Base (KB),
and to monitor the status of the infrastructure.

Since energy consumption ultimately depends on the power consumption of the
host machines in the DC, the enhanced Cloud orchestrator (we can refer to it as
the Efficient Cloud Resources Allocation Engine —ECRAE) exploits a simple but
rather effective power model to select the host for execution. The power-based model
becomes necessary to implement a greedy allocation strategy (Phase—1). Greedy allo-
cation strategy does not ensure an optimal allocation for the whole set of microser-
vices, thus, a further optimisation process is required (Phase-2). Here, a global opti-
misation algorithm is used to re-schedule all the allocated components with the
objective of globally reducing the power (energy) consumption.

4.4.2.1 Efficiency Model

The most critical element in the selection of the actual resource for executing a
microservice is the model used to rank the machines belonging to the DC infras-
tructure. One point to keep into consideration is the relation between energy (E) and
power consumption (P). The power P refers to the “instantaneous” energy consumed
by a system and generally varies over the time. Based on that, the energy consumed
by a system can be computed as the integral of the power consumption function on
a given period of time: E = ft: P(t)dt. The power consumed by a server machine
depends on several factors; however, it can be assumed that it is mostly influenced
by the consumption of the main hardware components (i.e. CPU, memory, storage
and network interface). Power consumption of the CPU and the memory depends
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on how much the software running on that node stresses these components. Since
the load generally changes over time, thus also the power consumed by the CPU
and memory (as well as other components) changes. Also, power consumption in
idle state is critical. In the literature [2, 5, 58], it has been well documented that a
conventional server machine, especially if not properly designed, may consume up to
65% of the maximum power consumption in the idle state. It is also worth noting
that given the nature of a service, it becomes difficult to foresee for how much time
it will last. For instance, it is not possible to define the amount of time for which a
database should run, since it is expected to be accessible unless a failure arises.

To tackle the above-mentioned challenges, we elaborated a simple but still effec-
tive model for ranking nodes in the infrastructure. By profiling the behaviour of
various microservices, we assume that each software component increases the CPU
and memory load for a given quantity. Such quantity (C;—represents the CPU
load increase expressed as a percentage, M;—represents the memory load increase
expressed as a percentage) is measured as the average increase generated by the
execution of that software component using the host machine in different working
conditions. The following equation allows to emit a score value (R) for a given node:

R={a Ci+ (1 —a) Mi} Pay 4.2)

The score R is the weighted measure of the current power consumption P, of the
node (the power weighted value is biased by the power consumption of the node
in idle state, so that the P,,, value is given by the power consumption in idle state
incremented by the fraction due to the machine load); where the weight is expressed
by a linear combination of the current CPU load (C;) and the memory load (M;). The
« parameter allows to tune the power weight, considering the eventual imbalance
between CPU and memory load factors. For instance, setting o« = (.25, the load on
the memory would be equal to 75%. Power consumption (F,,,) is obtained as a
measure of the average power consumption of the host platform in different working
conditions. Averaging the power consumption allows to capture the typical power
profile of the host system. Such value is read directly from the Knowledge Base,
thus it must be periodically updated to better reflect real machine behaviour. Such
mechanism requires the availability of a hardware power monitor and an interface to
query it. As part of the deployment mechanism, the envisioned high-density server
enclosures are equipped with such monitoring infrastructure, to ease the action of
the ECRAE system.

4.4.2.2 Static Allocation Strategy

TOSCA provides a hierarchical description of a generic Cloud application, which
is at the basis of the mechanism used to trigger the ““static” allocation strategy. For
each element of the hierarchy, the set of scripts to manage the installation and the
main functionalities exposed by the component are provided. The last element in
the hierarchy is represented by host features. In OPERA, we propose to use a tag to
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Algorithm 1: Static allocation strategy
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Input: Knowledge Base (KB)

Output: DC machine where to execute the microservice

Te, Tn, o < get_next_task()

tag < get_tag()

ay,ay < get_affinity()

Ni[] < get_node_list(ay)

Nao[ ] < get_node_list(az)

score[ ] < @

for each n;; in Ny do
Ci, My, Pyyg < get_node_status(nq)
R« f{aC+ (1 —a) M} Pavg
score| ] <— add_entry(R, n;jq)

score[ | < sort(score[ ])
sel_node_id_best; < select_min_score(score[ ], R)
go < True
while go = True or score[ | = @
do
sel_node_idy, < select_min_score(score| ], R)
if sel_node_id\(C;) + T, < 0.98 and
sel_node_idy (M) + T, < 0.98 then
| go < False

else
L score| ] < remove_entry(R, sel_node_idy)

if go = False then
L sel_node_id_best) < sel_node_id,

for each n;; in N> do
Ci, My, Pyyg < get_node_status(n;q)
R<—{aCr+ (1 —a) M} Pavg
scorel | <— add_entry(R, njq)

score| | < sort(score[ ])
sel_node_id_besty < select_min_score(score[ ], R)
go < True
while go = True or score[ ] = O
do
sel_node_idr, < select_min_score(score[ ], R)
if sel_node_idy(C)) + T, < 0.98 and
sel_node_idy(M;) + T,, < 0.98 then
| go < False

else
L score[ | < remove_entry(R, sel_node_id>)
if go = False then
L sel_node_id_besty < sel_node_id,
if score[sel_node_id_besty] < score[sel_node_id_best;] then
L return sel_node_id_best,

else
L return sel_node_id_best,
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describe the affinity of the software components and the host features. Such affinity
is representative of a possible configuration that is evaluated as the most suitable
for the execution of the specific component (e.g. a big-memory tag could be used to
represent the configuration of a big memory machine, which is well suited for in-
memory database operations). The correspondence between the affinity expressed
in the TOSCA descriptor and the node configurations is provided by the Knowledge
Base. Here, for each configuration, the list of nodes which provide that configura-
tion is also available, along with the actual CPU load, memory load and the average
power dissipation. Once the node that better fits with the ECRAE policies has been
selected, the corresponding full configuration is used to replace the affinity element
in the TOSCA descriptor. The result of such selection process for each application
component is a fully compliant TOSCA description file, which can be transformed
into a OpenStack compliant description. Interestingly, although the affinity with a
specific host configuration is a static information provided in the TOSCA description,
OPERA aims at finding and integrating a mechanism able to allow the orchestra-
tion system to “automatically learning” which is the best affinity mapping, as a
future investigation direction. To the purpose of retrieving information fast, the KB
is organised as a (relational) database. Specifically, three tables provide the required
information. One table is used to map tags with a list of possible machine configu-
rations. A second table provides the information of each node matching the specific
configuration. Finally, a third table provides the current CPU and memory load for
each node. This information is updated by an external component (e.g. ceilometer
module in the OpenStack, Carbon/Graphite, etc.). All these information then are
combined into a simple ranking model (see Eq.4.2).

The algorithm used by ECRAE is provided as a pseudocode (see Algorithm—1).
The first step is to extract the information related to the application component to
allocate (lines 1-2). This information regards the increment in terms of CPU and
memory loads (as a percentage), the tunable o parameter, and the affinity tag. Given
the affinity tag, in line 3 the corresponding configurations (affinities) are extracted.
We assume that the first configuration (a; ) represents the best match with the require-
ments of the application component; however, an alternative configuration can be
exploited (a,). Given the effective configurations, the algorithm extracts the list of
nodes in the data center that have those configurations (lines 4-5), then it creates
an empty list to associate to each node a corresponding R score. In lines 7-10, a
loop is used to create such list (the ranking model described in Sect.4.4.2.1), and in
line 11 the list is sorted. The first element (line 12) is the candidate node providing
the lowest power increase, but it is needed to verify if the corresponding increase
in the CPU and memory loads are acceptable. To this end, the algorithm analyses
all the available nodes (lines 13-21). If none of the nodes can be further loaded (a
threshold of 98% is assumed), the algorithm maintains the initial candidate solution.
Similarly, in lines 22—-40, a candidate solution is searched in the list of alternative
configurations. Finally, in lines 4144, the best ever node is returned. Given this
node, the corresponding exact configuration is substituted in the TOSCA descriptor,
and the application is allocated through the OpenStack environment (i.e. the Linux
container or the required virtual machine are instantiated on the selected node).
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For instance, let us consider two nodes, each of them belonging to one of the
flavours associated to a given affinity tag. For the sake of simplicity, we can assume
two X86_64 nodes, each in the idle state, but with different average power consump-
tion: we assume node; consuming up to 100 W (i.e. assuming 65% of idle power
consumption that is equal to 65 W), node, consuming up to 130 W (i.e. assuming
65% of idle power consumption that is equal to 84.5 W). Let us assume to sched-
ule two tasks loading the nodes by 45% each (i.e. the CPU load and memory load
are assumed equals to 0.45, using « = 0.5). Given this premise, the basic alloca-
tion policy (i.e. assigning the task to the less loaded node) leads to a higher power
consumption, as reported in Fig.4.5.

In fact, when the first task is selected, the two nodes are in the idle state and
both the strategies (basic and the one implemented by ECRAE) allocate the task to
node;. At this point, the power consumption of node; increases up to 80.75 W, with
an overall power consumption, for the two nodes, equals to 165.25 W. On the other
hand, the second task is allocated differently. ECRAE ranks the node depending
on their weighted power consumption, thus selecting node; also for the second task
(although node, is less loaded). This provides further 15.75 W of power consumption
(increasing the load up to 90%). Conversely, basic allocation strategy selects the
node with the lowest load, leading node; to be selected. In that case, the execution
of second task on such node provides 20.475 W of power consumption, leading to
an overall power consumption of 185.72 W. Although the power saving for the two
nodes is around 5 W, if we consider such saving on a large slice of the DC servers,
we obtain a huge improvement in terms of energy saving.

4.4.2.3 Dynamic Allocation Strategy

Static workload allocation exploits an aggressive greedy strategy that does not ensure
global optimal allocation of the resources. To guarantee such optimality, an instance
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of a global scheduling problem (i.e. Bin Packing Problem—BPP) must be solved.
Workload scheduling is a well-known optimisation problem that fits in the complexity
class of NP-Hard problems. It can be formulated as follows: Given a set of different
objects (VMs or containers), each with a volume S; (i.e. the amount of CPU and
memory used), the objective is to assign as much as possible objects to a bin (i.e.
a server machine) that as a finite volume V; (i.e. a certain amount of CPU and
memory offer). In the context of workload scheduling, the problem requires the
minimisation of the number of running machines (i.e. the number of used bins), and
also the whole power consumption of the data center (i.e. an heuristic should try
to consolidate as much as possible the workload on the minimum number of active
hosts). Among various algorithmic solutions, evolutionary-based (and in particular
the Particle Swarm Optimisation) techniques allow to quickly solve large instances
of this problem.

Particle Swarm Optimisation (PSO) is a population-based stochastic metaheuristic
developed by Kennedy and Eberhart in 1995 to optimise multi-modal continuous
problems. In PSO, a group of independent solutions (termed as particles) are used to
sample the search space and discover the optimal solution. The state of such group
of particles is evolved over time, by updating particles’ position within the multi-
variable search space. Passing from one position in a given instant of time to another
is made by taking into account particles’ velocity. The velocity and the position of
the particles are taken care by two components, which are described as two factors
incorporating a form of distributed intelligence:

e Cognitive factor: encodes the information regarding the history of the best position
assumed by the particles at certain moment in time.

e Social factor: encodes the information relating to the history of the best position
assumed by the neighbourhood of the particle at certain moment in time.

These two factors are used to adapt the velocity of the particles in such a way it can
steer the position towards the optimal solution. PSO does not make use of operators
devoted to combining solutions belonging to the same population. On the contrary,
the social factor allows to incorporate the knowledge collected by other particles. The
topology of the neighbourhood influences the behaviour of the heuristic, although
the entire set of particles is used as the neighbourhood (i.e. lattice model). The lattice
model also has the advantage of keeping the number of operations used to determine
the absolute best position low.

The PSO algorithm is a key component of the ECRAE, since it allows to periodi-
cally redistribute the workload on the DC resources, towards their efficient exploita-
tion. At the basis of this periodic imbalance reduction strategy, there is the possibility
of migrating application components from one machine to another. Traditional vir-
tual machines can be transparently migrated, but their associated overheads are not
acceptable for an effective implementation of the microservices model. To overcome
these limitations, Linux containers must be put in place. Linux containers are not
designed to be migrated, but such feature becomes important to fully unleash their
potential. In the following section, we discuss the way adopted in OPERA to solve
this challenge.
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4.4.3 Workload Migration

If microservices are in use (i.e. containerised application components), and the
microservices have been designed to be scalable and resilient, it is possible that
scaling up (i.e. creating more instances) or scaling down (i.e. destroying instances)
of a given microservice is the best way to balance the load [59-61]. In other cases,
creating or destroying containers is not possible, and we must resort to migration.
Virtual machines are more heavyweight example of an execution context, and the
price for instantiating new VMs may be considerably higher than migrating an exist-
ing one. On the contrary, Linux containers are an example of a lightweight execution
context for the microservices model. In the OPERA project, not only we look at how
to implement container migration, but also how to perform that in a heterogeneous
data center. First, let us list and explain the options that do not make sense. We
can then deal with the remaining options as viable, and look at which ones we are
focusing on.

In the case of machines with different ISAs (but still general- purpose CPUs)
VM migration between two machines may have a merit. Today, it is possible to
migrate a VM to a server exposing a different ISA by employing a binary translation
mechanism (such as QEMU), which can emulate the target ISA and translate from
the source ISA through software functions. This kind of emulation is at least an
order of magnitude slower than running native code, which means it should not be
used in performance-critical situations. Due to the amount of software running, it
also consumes more energy than the native equivalent, and is, therefore, not efficient
from several perspectives.

Migrating workloads to accelerators (such as GPGPUs) is a possible avenue that
may show results in the future. However, nowadays, due to many restrictions and
architectural specialisation, accelerators are not able to manage the execution of a
whole VM or container. In fact, such technologies rely on features available on gen-
eral purpose processors, and they are mostly developed around the widely adopted
X86_64 architecture. Although in OPERA the objective is to seamlessly access
accelerators (e.g. GPGPUs or even to FPGAs), their usage is limited to the offload-
ing of computational-heavy functions. Here, migration in an heterogeneous context
means focusing on multiple ISAs and different types of compute resources, but still
relying on general-purpose processors. For these reasons, it does not make sense to
migrate a virtual machine or container to such accelerators. It is likely that much more
efficient methods of moving a workload to such compute resources will exist. Fur-
thermore, in the case of FPGAs, the acceleration is mainly a static mapping between
a computational-heavy function and a dedicated circuit. Even if we are going to con-
sider the case of “high level synthesis” languages such as OpenCL, there is not yet a
clear path for migrating general applications (or portions thereof) to such wildly dif-
ferent compute resources. Further, although techniques to dynamically reconfigure
the FPGA devices exist and can be used, their overhead remains too high to justify
their implementation on a large scale.
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4.4.3.1 Container Migration

Container migration (and process migration as the generalised case) is a more relevant
problem for which we can develop a solution. Containers gain importance due to the
advent of microservices, in which applications are decomposed, and each component
is isolated from the others by means of containers. Some containers run services that
cannot easily be replicated or scaled (such as in-memory databases), and the cost to
migrate such containers is likely to be less than attempting replication. Moreover,
container migration is performed at the system level, which means the application
does not need to be aware of how to migrate itself, nor that the migration is even taking
place. Thus, we may provide migration support for such containerised applications
that do not contain support for scaling or replication.

There are several popular implementations of containers on the Linux operating
system, such as Docker, LXC/LXD and Runc. Those container implementations rely
on Checkpoint-Restore in Userspace (CRIU) tool for checkpointing, restoring and
migrating the containers. Although CRIU relies heavily on advanced features found
in the Linux kernel, it does not require any modifications of the kernel itself and it is
able to perform checkpoint and restore operations entirely in userspace. At the basic
level, CRIU allows freezing a running application and checkpointing it as a collection
of files. These files can be later used for restoring the application and continuing
execution from the exact point where it was frozen. This basic checkpoint-restore
functionality enables several features such as application live migration, application
snapshots, remote application analysis and remote debugging. Any flavour of Linux
containers can be abstracted as a process tree along with additional properties required
for process isolation and fine-grained resource management. These processes may
have access to various virtual and pseudo devices. CRIU is capable to snapshot the
state of the entire process tree as well as the state of the virtual and pseudo devices
the processes in the process tree are using. In addition, the properties required for
process isolation and fine-grained resource management are saved and become an
integral part of the container state snapshot.

4.4.3.2 Comparing Post-copy and Pre-copy Migration techniques

The container state snapshot contains several components that describe process state,
open file descriptors, sockets, Linux namespaces, state of virtual and pseudo devices.
Yet, all these objects are small and can be easily migrated between different hosts
with negligible latency. The part of the container state requiring most of the storage
capacity for a snapshot or most of the network bandwidth for a migration is the
memory dump of the processes that run in a container. For the case of the container
migration, the amount of the memory used by the applications running inside the
container defines the time required to migrate the container, as well as the downtime
of the application.

The simplest and naive implementation of container migration is as follows: (i)
freeze all the processes inside the container; (ii) create a snapshot of the entire
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container state, including complete memory dump of all the processes; (iii) transfer
the container state snapshot to the destination node; and (iv) restore the container
from the snapshot. In this case, the time required to migrate the container and the
downtime of the application running inside it are equal and both these times are
proportional to the amount of memory used by the processes comprising the con-
tainer. The application downtime during migration may be decreased with one or
more round of memory pre-copy before freezing the container. With iterative mem-
ory pre-copy, container migration time is slightly longer that in the simple case, but
the actual downtime of the application is significantly smaller in most cases. How-
ever, such approach may not work for applications with rapidly changing memory
working set. For such applications, the amount of modified memory will always be
higher than the desired threshold, and therefore the iterative pre-copy algorithm will
never converge.

An alternative approach for reducing the application downtime is called post-copy
migration (this is also the approach adopted in OPERA). With post-copy migration,
the memory dump is not created and memory contents are transferred after the
application is resumed on the destination node. The primary advantage of post-copy
migration is its guaranteed convergence. Additionally, post-copy migration requires
less network bandwidth than iterative pre-copy migration, since the memory contents
are transferred exactly once. The migration time, in this case, is small because only
the minimal container state snapshot is transferred before the execution is resumed
on the destination node. The application downtime is almost as small as the migration
time, however, immediately after migration the application will be less responsive
because of the increased latency for memory access (this initial low responsiveness
is generally tolerated in Cloud applications).

4.4.4 Optimising Virtual Memory Management

Also, finding the correlation between using different compute resources and run-
time help the development of a methodology for performance estimation, in terms
of run-time and energy consumption. Accurate and fast methods for performance
estimation will be beneficial, for example, in workload management and dynamic
allocation of resources. As the number of huge memory pages that can be allocated
and the number of threads is limited in increasing performance perspective, then
allocating these limited resources between applications that run on the same system
requires to have some model to find the best allocation of these resources, to get
the best performance. In modern computing platforms and data centers, the DRAM
size is not the main performance bottleneck (and energy consumption source), and
modern computing platforms can support terabytes of DRAM. But, increasing only
the DRAM size does not increase address translation table (TLB), which is used in
modern CPUs to quickly access memory locations. Because TLB capacities cannot
scale at the same rate as DRAM, TLB misses and address translation can incur
crippling performance penalties for large memory workloads. TLB misses might
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degrade performance substantially and might account for up to 50% of the application
run-time [62]. So, increasing only DRAM size will not improve the performance for
some applications (especially memory intensive ones), that suffer from TLB misses.
Therefore, using huge memory pages can save some of these penalties by the fact
that using TLB entries of huge pages covers much more memory space than when
using the same number of TLB entries of base pages.

There are two main challenges in running the profiling work on modern computing
platforms. The first is that these platforms are designed to run multiple tasks on
multiple cores, and then we should profile only the running work without being
affected by other tasks that run on the same system, or on the same core. The second
challenge, is that developing an estimation model requires few different samples of
run-time for different page walks or threads, but getting diversity in TLB page walks
for the same workload is more challenging, in terms of controlling the page walks
or the allocated huge pages.

Hardware performance counters are set of special-purpose registers built into
modern microprocessors to store the counts of hardware-related activities within
computer systems. Advanced users often rely on those counters to conduct low-
level performance analysis or tuning. The main counters and hardware events we
are interested in using for analysing applications’ behaviour and drawing an eval-
uation model are: (i) the DTLB_LOAD_MISSES:WALK_DURATION, and (ii)
DTLB_STORE_MISSES:WALK_DURATION (this are available on X86_64 pro-
cessors, but similar can be exploited on different architectures); which respectively
count the total cycles the Page Miss Handler (PMH) is busy with page walks for
memory load and store accesses. The majority of the processors also implement per-
formance counters collecting information regarding the power and energy events,
which are of interest to find a correlation between the application performance and
the energy efficiency of the hardware in use. An example of such performance coun-
ters is represented by the RAPL interface available on the Intel X86_64 processors.
RAPL is not an analogue power metre, but rather uses a software power model.
This software power model estimates energy usage by using hardware performance
counters and I/O models. Based on the analysis of the GUPS benchmark (this is
representative of memory intensive workloads found in DCs) running on two refer-
ence machines, the impact on the memory subsystem can be analysed. Generally,
plotting the application run-time as a function of DTLB load page walks provides
a simple linear model. Such simple model offers more space for understanding the
application behaviour and for optimising the memory access pattern (we can assume
that page walks have a linear overhead on run-time). Such conclusion is confirmed
by the analysis of the energy consumption as a function of DTLB load page walks.
Again a linear model is enough to explain collected data, showing large opportu-
nity to optimise the application energy impact. Although enough accurate to capture
application behaviour in most of the cases, more complex model (e.g. quadratic one)
should be used to limit the evaluation error.
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4.5 Ultra-Low-Power Connected Cyber-Physical Systems

Cyber-Physical Systems (CPS) are becoming an essential part of modern large-scale
infrastructures, such as in the case of Cloud data centers. CPS provides enough
computing and storage capabilities to preprocess captured data, before streaming
them in the Cloud back-end. Also, they embed different sensors and actuators, so
that they make easy to remotely interact with the surrounding physical environment.
However, to further enlarge CPS adoption, more energy-efficient technologies must
be putin place, as well as a more effective way of exploiting back-end capabilities for
processing captured data. To this end, OPERA provides, not only a highly integrated
design, but also a mechanism to effectively offload more computational intensive
tasks on high-performance accelerated servers.

4.5.1 Accelerating Smart Vision Applications

Video surveillance is one of the most interesting application fields for smart con-
nected devices. In OPERA, “intelligent” cameras are used to monitor urban traffic
aiming at recognising potential situations of risk. Such kind of application covers
multidisciplinary fields, spanning computer vision, pattern recognition, signal pro-
cessing and communication. The complexity of the application is high, and when
it has to be performed in a time-constrained manner, the situation is exacerbated.
Meeting the requirements for such application means implementing advanced hard-
ware systems, albeit generally with a low energy efficiency. From this viewpoint,
integration of functionalities in the form of dedicated hardware modules is consid-
ered as a technological key feature to increase CPS efficiency. Video surveillance
also exposes large parallelism to the hardware: processing functions are applied to
(groups of) pixels in parallel.

For this reason, OPERA design adopts a highly parallel architecture based on an
ultra-low power (ULP) many-core solution designed to operate with very low supply
voltage and currents. Specifically, it exploits energy-efficient cores (EE-cores) which
can accelerate several operations in hardware, as well as exploit an energy-optimised
instruction set architecture. With such features, the envisioned computing layer can
perform operations only requiring few pJ of energy. In addition, a dedicated image
processing unit allows performing complex operations, such as moving object detec-
tion and image/video compression, at a low energy consumption when compared
with standard software implementations. Also, OPERA aims at further improving
the performance/power ratio by integrating HW/SW components to accelerate con-
volutional neural networks (CNNs). CNNs allow, with a limited increase in the used
resources, to improve the identification of classes of objects on the scene (this task
is the basis for any video monitoring application). However, every time the scene
to analyse requires more computational capabilities with respect to that available on
the CPS, the analysis task can be effectively offloaded on a remote high-performance
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Fig. 4.6 OPERA Cyber-Physical System architecture: an ultra-low-power many-core processor
with acceleration function for CNNs is directly attached to the camera sensor and to the reconfig-
urable communication antenna

server. Thorough a dedicated API, the CPS can access to a Cloud (micro)service:
here, more complex algorithms can be run and efficiently accelerated using GPGPUs
or FPGA boards.

The complete CPS design (see Fig.4.6) envisages a low-power reconfigurable
radio-frequency (RF) communication interface. This kind of communication inter-
face is of particular interest for video surveillance and monitoring applications where
the environmental context is particularly critical, such as in the case of mountain
roads where connectivity is not reliable. To deal with this issue, our reconfigurable
RF module will be capable of adapting the transmission to the best channel/protocol
features. Since RF transmission is generally power hungry, we will design the RF
interface with very low power components.

4.6 The Real-Life Application Context

OPERA aims at providing technology demonstration on improved energy effi-
ciency, scalability and computational performance by resorting to three real-world
applications.
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4.6.1 Virtual Desktop Infrastructure

The purpose of this use case is to demonstrate how the set of technologies taken into
consideration by OPERA, allows to make data centers more scalable, and energy
efficient. The idea is to exploit the “as-a-service” model to provide a virtual desk-
top infrastructure (VDI), i.e. a remotely accessible desktop environment. Users are
increasingly demanding access to their applications and data anywhere and from any
device. The rapid growth of “nomadic” workers who roam from one computer/device
to another leads organisations to provide access to the users’ desktop experience at
any computer in the workplace, effectively detaching the user from the physical
machine. Virtualization is at the basis of this process: employees can access their
applications and data very safely over a network, and the risk of data loss is min-
imised. On the other hand, such practice allows IT departments also to save costs by
consolidating services on physical resources (server machines hosted in private or
public DCs).

To address this challenge, OPERA implements a solution based on the open-
source framework OpenStack. Specifically, OpenStack components such as Cinder
and Ceph file system, are used to cover block storage needs for virtual machines and
containers. Given the low-latency requirements of this use case, network management
is also concerned. To this end, OPERA exploits the flexibility furnished by Neutron.
In addition, network latency will be kept low by leveraging on a more powerful
remote desktop protocol with respect to the traditional protocols (e.g. VNC, RDP,
etc.). Finally, to keep as low as possible the overhead of the software virtualization
layer, a mechanism based on the KVM hypervisor and containerisation is put in place
to run lightweight virtual machines on low-power servers.

4.6.2 Mobile Data Center on Truck

OPERA intends to deliver mobile IT services for the Italian agency called Protezione
Civile. IT services, such as forecasting and risk prevention, contrasting and overcom-
ing emergencies, are delivered through a truck (operated by partner CSI Piemonte)
equipped with electronic instruments which allow: (i) creating a satellite communi-
cation link; (ii) acquiring images and videos of area surrounding the truck; and (iii)
processing, temporary archiving and transferring acquired data (videos and images).
Images and videos are captured using a drone equipped with cameras and wireless
connectivity. The use of a drone is helpful also in the case of dangerous or difficult
access to the target site. Once acquired, images and videos are then processed on
the truck. Data processing consists of these two steps: (i) the arrangement of the
videos by deleting not useful parts, adding comments, etc.; and (ii) the creation of
orthoimages for their subsequent comparison with others archived. An orthoimage
is a normalised image with respect to a given reference framework, and the creation
of orthoimages generally represent a compute-intensive task. For instance, 20 min
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of flight yield 300 photos that require approximately 15 h to be processed with a
standard X86_64 machine (having a resolution of 10~2 m). Moving from a standard
computer to a high density, but low-power server equipped with an FPGA accelerator
enables OPERA to greatly speedup the processing task: the elaboration of the same
set of photos can be completed in roughly 30 min, while keeping low the impact on
the power source of the truck (currently, a gasoline power generator).

4.6.3 Road Traffic Monitoring

OPERA foresees a growing interest in using remotely controlled CPS for traffic
monitoring purposes in urban and rural contexts. Deploying ultra-low-power CPS
equipped with effective video processing and wireless communication capabilities,
makes possible to monitor large geographic areas in a more energy-efficient manner.
For instance, it becomes possible to quickly detect accidents or any situation of risk
and communicate alerts (eventually also to vehicles). To this end, collected and pre-
processed data are transferred to low-power servers located in a remote data centers
for further analysis and proactive actions intended to reduce such risk situations.

4.7 Conclusion

In this chapter, we have presented hardware and software technologies, as well as
their integration into a fully functional infrastructure covering the whole computing
continuum. Such mix of technological solution is still under development, within
the context of the OPERA H2020 European project. This project aims at improving
the energy efficiency of current Cloud computing infrastructures by two orders of
magnitude when compared with current state-of-the-art systems. To accomplish with
this challenging objective, the integration of several advancements on the data center
side, as well as on the end-nodes of the Cloud is envisioned. Particular attention
to the integration of (ultra-)low power high-performance technologies is of primary
interest for the project.

Specifically, OPERA foresees to gain efficiency on the data center side, by propos-
ing a modular, high-density server enclosure equipped with small low power server
boards, and accelerator cards. To maximise the efficiency, FPGA devices will be used
in the accelerator boards to provide acceleration for specific kernels as well as low-
latency connectivity toward POWER nodes. In addition, to fully exploit this wider
heterogeneity, applications leverage on a modular architectural style (microservices)
that allows to better scale. On the other hand, Cloud end-nodes (i.e. CPS) are made
less power hungry by integrating many-core processing elements with dedicated
hardware accelerated functions and reconfigurable wireless communication inter-
faces. To assess the feasibility of the envisioned platform, OPERA aims at testing its
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solution on three real-world applications, albeit the results carried out in the project
are of interest for a broader community.
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Chapter 5

Energy-Efficient Acceleration of Spark e
Machine Learning Applications

on FPGAs

Christoforos Kachris, Elias Koromilas, Ioannis Stamelos, Georgios Zervakis,
Sotirios Xydis and Dimitrios Soudris

5.1 Introduction

Emerging applications like machine learning, graph computations, and generally
big data analytics require powerful systems that can process large amounts of data
without consuming high power. Furthermore, such emerging applications require fast
time-to-market and reduced development times. So to address the large processing
requirements of these applications, novel architectures are required in the domain of
high-performance and energy-efficient processors.

Relying on Moore’s law, CPU technologies have scaled in recent years through
packing an increasing number of transistors on chip, leading to higher performance.
However, on-chip clock frequencies were unable to follow this upward trend due to
strict power-budget constraints. Thus, a few years ago a paradigm shift to multicore
processors was adopted as an alternative solution for overcoming the problem. With
multicore processors, we could increase server performance without increasing their
clock frequency. Unfortunately, this solution was also found not to scale well in the
longer term. The performance gains achieved by adding more cores inside a CPU
come at the cost of various, rapidly scaling complexities: inter-core communication,
memory coherency and, most importantly, power consumption [1].

In the early technology nodes, going from one node to the next allowed for a
nearly doubling of the transistor frequency, and, by reducing the voltage, power
density remained nearly constant. With the end of Dennard’s scaling, going from
one node to the next still increases the density of transistors, but their maximum
frequency is roughly the same and the voltage does not decrease accordingly. As
a result, the power density increases with every new technology node. The biggest
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challenge, therefore, consists of reducing power consumption and energy dissipation
per mm?,

Therefore, the failure of Dennard’s scaling, to which the shift to multicore chips
is partially a response, may soon limit multicore scaling just as single-core scaling
has been curtailed [2]. This issue has been identified in the literature as the dark
silicon era in which some of the areas in the chip are kept powered down in order to
comply with thermal constraints [3]. One way to address this problem is through the
utilization of hardware accelerators. Hardware accelerators can be used to offload
the processor, increase the total throughput and reduce the energy consumption.

The main contribution of this chapter is a novel framework that is used to extend
Spark and allows the seamless utilization of hardware accelerators in order to speedup
computational-intensive algorithms in Spark. The proposed framework can be cus-
tomized, based on the application requirements and allows the utilization of the
hardware accelerators with minimum changes in the original Spark code.

The main novelties of the proposed framework are the following:

An efficient framework for the seamless utilization of hardware accelerators for
Spark applications in heterogeneous FPGA-based MPSoCs.

The development of an efficient set of libraries that hide the accelerator’s details
to simplify the incorporation of hardware accelerators in Spark.

Mapping of the accelerated Spark to a heterogeneous 4-nodes cluster of all-
programmable MPSoCs (Zynq) based on the Pynq platform.

A performance evaluation for two usecases on machine learning (Logistic Regres-
sion and K-Means) in terms of performance and energy efficiency that shows
how the proposed framework could achieve up to 2.5x speedup compared to a
high-performance processor and 23 x lower energy consumption.

e For embedded applications, the proposed system can achieve up to 36x system
speedup compared to embedded processors and 29 x better energy efficiency.

5.2 Related Work

In the past few years, there have been several efforts for the efficient deployment of
hardware accelerators for cloud computing.

Ghasemi and Chow [4] have introduced a framework for the acceleration of
Apache Spark applications. They provide a thorough description of their setup and
the bottlenecks that arise as well as experimental results for varying cluster and data
sizes. The results are based on a newly implemented accelerated version of the K-
Means algorithm. Although their approach is similar to ours, the main difference is
found in the programming language that is being used for the implementation of any
new APIs. Ghasemi and Chow [4] use JNI to send commands and communicate with
the hardware accelerator, while Python cffi objects are used in our case to control
the FPGA. Apart from that, their implemented HDFS is consisted of datanodes, that
run on each worker while in our case the HDFS runs in pseudo-distributed mode and
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is hosted on the master node to avoid any additional overhead on the workers side.
Finally, we have implemented two hardware accelerators, for Logistic Regression and
K-Means algorithms, respectively, and have taken evaluation metrics, proving that
our framework is well suited for the ML family algorithms that are compute intensive.

Huang et al. [5] have implemented a framework for the deployment of FGPA accel-
erators in Spark and Yarn. They provide a generic API to access FPGA resources,
while no changes need to be done to Spark or Yarn for the applications to be accel-
erated and executed on the FPGAs. Although they present a concrete scheme for the
resource management of the FPGAs and the tasks scheduling, an additional overhead
is added to the dataflow stack, limiting the overall performance. Our work differs
as it is based on PySpark and the incorporation of FPGA accelerators in distributed
embedded environments through Python libraries.

Chen et al. [6] have implemented a next-generation DNA sequencing application
for Spark that uses, PCI-express connected, FPGA accelerators achieving a 2.6 x
performance speedup. The authors focus on the challenges of such an integration
and propose their own solutions while they do not provide a lot of information
for the integration of FPGAs to Spark. In this work, we present all the low-level
steps we followed including the developed libraries for the communication with
the hardware accelerators. Furthermore, we propose a framework that is based on
Python and PySpark, making it ideal for the fast development and evaluation of new
applications.

Cong et al. [7] present an integrated framework for the efficient utilization of
hardware accelerators under the Spark framework. The proposed scheme is based
on a cluster-wise accelerator programming model and runtime system, named Blaze,
that is portable across accelerator platforms. Blaze is mapped to the Spark cluster
programming framework. The accelerators are abstracted as subroutines to Spark
tasks. These subroutines can be executed either on local accelerators, when they
are available, or on the CPU to guarantee application correctness. The proposed
scheme has been mapped to a cluster of 8 Xilinx Zynq boards that host two ARM
processors and a reconfigurable logic block. The performance evaluation shows that
the proposed system can achieve up to 1.44x speedup for the Logistic regression
and almost the same throughout for the K-means and 2.32x and 1.55x better energy
efficiency, respectively. It has been also mapped to typical FPGA devices connected
to the host through the PCI interface. In this case, the performance evaluation shows
that the proposed system can achieve up to 3.05 x speedup for the Logistic regression
and 1.47 x speedup for the K-Means and reduces the overall energy consumption by
2.63x and 1.78x, respectively.

There have also been efforts of creating OpenCL kernels for FPGAS including
Segal’s et al. SparkCL [8] framework that delegates the code to Spark and Aparapi
UCores [9] on OpenCL. In other words, Java bytecode is translated to OpenCL
creating at runtime any FPGA kernels. Although this approach has potentials, it
needs more work to be done and metrics to be taken in order to evaluate the overall
benefits in performance and energy consumption and it seems that is more suited to
the field of GPUs, where fast compilation times can be achieved.
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Kachris et al. [10] present a detailed survey on hardware accelerators for cloud
computing applications. In their survey, it is both shown the programming framework
that has been developed for the efficient utilization of hardware accelerators as well as
the accelerators that have been developed for several applications including machine
learning, graph computation, and databases.

IBM has announced in 2016, the availability of SuperVessel cloud, a development
framework for the OpenPOWER Foundation. SuperVessel has been developed by
IBM Systems Labs and IBM Research based in Beijing. The goal of the SuperVessel
cloud is to deliver a virtual environment for the development, testing, and piloting of
applications. The SuperVessel cloud framework takes advantage of IBM POWER 8§
processors. Developers have access to Xilinx FPGA accelerators, which use IBMs
Coherent Accelerator Processor Interface (CAPI) [11]. Using CAPI, an FPGA is
able to appear to the POWER 8 processor as if it were part of the processor.

Xilinx has also announced in late 2016, a new framework called Reconfigurable
Acceleration Stack. This stack is aimed at hyperscale data center that needs to deploy
FPGA accelerator. The FPGA boards can be hosted in typical servers and are utilized
based on application-specific libraries and framework integration for the five key
workloads. These include machine learning inference, SQL query, and data analytics,
video transcoding, storage compression, and network acceleration [12]. According to
Xilinx, the acceleration stack based on the FPGAs can deliver up to 20 x acceleration
over traditional CPUs with a flexible, reprogrammable platform for rapidly evolving
workloads and algorithms.

Byma et al. [13] introduce a novel approach for integrating virtualized FPGA-
based hardware resources into cloud computing systems with minimal overhead.
The proposed framework allows cloud users to load and utilize hardware accelerators
across multiple FPGAs using the same methods as the utilization of Virtual Machines.
The reconfigurable resources of the FPGA are offered to the users as a generic cloud
resource through OpenStack.

In this chapter, we give a thorough description of the framework both in terms of
software and hardware components and an extended performance evaluation of two
widely used machine learning algorithms. Specifically, in this chapter, we present
a seamless utilization of hardware accelerators that can be used both for embedded
systems and high-performance applications that are based on the Spark framework
for computational-intensive applications like machine learning and graph compu-
tation. The proposed framework allows the transparent utilization of the hardware
accelerators based on the Spark framework using the accelerators as typical python
packages.

5.3 Apache Spark

One of the typical applications that are hosted in cloud computing is data analytics.
Apache Spark [14] is one of the most widely used frameworks for data analytics.
Spark has been adopted widely in recent years for big data analysis by providing a
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fault-tolerant, scalable, and easy to use in-memory abstraction. Specifically, Spark
provides programmers with an application programming interface centered on a data
structure called the resilient-distributed dataset (RDD). RDD is a read-only multiset
of data items distributed over a cluster of machines, that is maintained in a fault-
tolerant way [15]. It was developed in response to limitations in the MapReduce
cluster computing framework, which forces a particular linear dataflow structure on
distributed programs. MapReduce programs read input data from disk, map a function
across the data, reduce the results of the map, and store reduction results on disk.
Spark’s RDDs function as a working set for distributed programs that offers restricted
form of distributed shared memory. Therefore, the latency of such applications,
compared to Apache Hadoop, may be reduced by several orders of magnitude.

When the user runs an action (like collect), a Graph is created and submitted to a
DAG Scheduler. The DAG scheduler divides operator graph into (map and reduce)
stages. A stage is comprised of tasks based on partitions of the input data. The DAG
scheduler pipelines operate together to optimize the graph. The final result of a DAG
scheduler is a set of stages. The stages are passed on to the Task Scheduler. The task
scheduler launches tasks via cluster manager. The Worker then executes the tasks for
the task processing [15], as is depicted in Fig.5.1.

Spark libraries cover four main categories of applications: machine learning
(MLib), graph computations (GraphX), SQL query, and streaming applications.

e Spark MLIib is a scalable machine learning library consisting of common
learning algorithms and utilities, including classification, regression, clustering,
collaborative filtering, dimensionality reduction, as well as underlying optimiza-
tion primitives.

e GraphXisa Spark API (Application Programming Interface) for graphs and graph-
parallel computation. At a high level, GraphX extends the Spark RDD by introduc-
ing the Resilient- Distributed Property Graph: a directed multi-graph with prop-

RDD Obijects DAGScheduler TaskScheduler Worker
| Cluster
T T ; manager Threads
DAG -_ TaskSet Task Block
. A —————" # manager ]
rddl.join(rdd2) split graph into launch tasks via execute tasks
.groupBy(..)
Citert) stages of tasks cluster manager
. submit each retry failed or store and serve
build operator DAG stage as ready straggling tasks blocks

Fig. 5.1 The Spark framework
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erties attached to each vertex and edge. GraphX includes a growing collection of
graph algorithms and builders to simplify graph analytics tasks.

e Spark SQL provides the capability to expose the Spark datasets over JDBC API
and allow running the SQL-like queries on Spark data using traditional business
intelligence (BI) and visualization tools.

e Spark Streaming can be used for processing the real-time streaming data. This
is based on micro-batch style of computing and processing. It uses the DStream,
which is basically a series of RDDs, to process the real-time data.

5.4 SPynq: A Framework for Spark Execution on a Pynq
Cluster

PYNQ[16] is an open-source project from Xilinx that makes it easy to design embed-
ded systems with Xilinx Zynq AP SoCs. Using the Python language and libraries,
designers can exploit the benefits of programmable logic and microprocessors in
Zynq to build more capable and exciting embedded systems. PL circuits are pre-
sented as hardware libraries called overlays. These overlays are analogous to soft-
ware libraries. A software engineer, can select the overlay that best matches their
application and access it easily through an Application Programming Interface (API).
The PYNQ-Z1 board is the hardware platform for the PYNQ open-source framework
and is based on the Zynq all-programmable SoC. On top of the Pynq framework, we
have efficiently mapped the Spark framework and we have adapted it to communi-
cate with the hardware accelerators located in the programmable logic of the Zynq
system. Spark master node is hosted on a personal computer that comes with an
Intel i5 x86_64 architecture processor, but also an Intel x86 or ARM system could
be used. Worker nodes are hosted on PYNQ-Z1’s ARM cores. Figure 5.2 shows the
proposed cluster architecture.

In addition, Spark comes with three different cluster managers: Standalone, Yarn,
and Mesos. For the specific evaluation, the standalone manager is used in client mode,
meaning that the driver of Spark is launched in the same process as the client that
submits the application. Each worker node is configured for starting one executor
instance. Furthermore, a Python API is used for each accelerator that is used for the
communication with the hardware accelerator. Each Python API is communicating
with the C library that serves as the hardware accelerator driver.

On the reconfigurable logic part, the hardware accelerators for the specific appli-
cation are hosted. The hardware accelerators are invoked by the Python API of the
Spark application. Therefore, the only modification that is required is the extension
of the Python library with the new function calls for the communication with the
hardware accelerator.

In the typical case, the Spark application invokes the Spark MLIib and this library
utilizes the Breeze library (a numerical processing library for Scala). Breeze library
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Fig. 5.3 SPynq ecosystem and its layers of abstraction

invokes the Netlib Java framework that is a wrapper for low-level linear algebra
tools implemented in C or Fortran. Netlib Java is executed through the Java Virtual
Machine (JVM) and the actual linear algebra tools (BLAS—Basic Linear Algebra
Subprograms) are executed through the Java Native Interface (JNI).

All these layers add significant overhead to the Spark applications. Especially
in applications like machine learning, where heavy computations are required, these
layers add significant overhead to the computational kernels. Most of the clock cycles
are wasted for passing through all these layers (Fig.5.3).

The utilization of hardware accelerators directly from Spark has two major advan-
tages; first, the application in Spark remains as it is and the only modification that
is required is the replacement of the machine learning library’s function with the
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function that invokes the hardware accelerator. Second, the invoking of the hardware
accelerators from the Python API eliminates many of the original layers thus making
faster the execution of these tasks. The Python API invokes the C API that serves as
a hardware acceleration’s library.

5.5 Usecases on Machine Learning

To evaluate the proposed framework, we have developed two hardware accelerators,
one for Logistic Regression (LR) training with Gradient Descent and more specifi-
cally for the gradients kernel, and one for K-means clustering and more specifically
for the computation of the centroids. The hardware accelerators have been imple-
mented using the Xilinx Vivado High-Level Synthesis (HLS) tool. The algorithms
have been written in C and have been annotated with HLS pragmas for the efficient
mapping in reconfigurable logic.

5.5.1 Algorithmic Approach of Logistic Regression

Logistic Regression is used for building predictive models for many complex pattern-
matching and classification problems. It is used widely in such diverse areas as
bioinformatics, finance, and data analytics. It is also one of the most popular machine
learning techniques. It belongs to the family of classifiers known as the exponential
or log-linear classifiers and is widely used to predict a binary response. For binary
classification problems, the algorithm outputs a binary logistic regression model.
Given a new data point, denoted by x, where xo = 1 is the intercept term, the model
makes predictions by applying the logistic function k(z) = #, where 7 = w’ x.

By default, if h(wTx) > 0.5, the outcome is positive, or negative otherwise,
though unlike linear SVMs (Support Vector Machines), the raw output of the logistic
regression model, 4(z), has a probabilistic interpretation (i.e., the probability that x
is positive).

Given a training set with num Examples (n) data points and num Features (m)
features (not counting the intercept term) {(x2,v9), (1, yY, "1, y*= 1}, where y*
is the binary label for input data x* indicating whether it belongs to the class or not,
logistic regression tries to find the parameter argument w (weights) that minimizes
the following cost function:

n—1

1 . ) . .
Jow) ===y loglh(wx)] + (1 = y) logll — h(w"x")]}
i=0
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The problem is solved using Gradient Descent (GD) over the training set (« is the
learning rate):

: procedure train(x, y)

initialize w with zero

while not converged:
gradients_kernel(x, y, w)
forevery j =0,...,m — 1:

— %5,
WJ__ngJ

AN N AW =

-

: procedure gradients_kernel (x, y, w)
for every j =0,...,m — 1:

9: g =2ipllhtwx) — yx)

For multi-class classification problems, the algorithm compares every class with
all the remaining classes (One vs. Rest) and outputs a multinomial logistic regression
model, which contains numClasses (k) binary logistic regression models. Given a
new data point, kK models will be run, and the class with largest probability will be
chosen as the predicted class.

o]

5.5.2 Algorithmic Approach of K-Means

K-means is one of the simplest unsupervised learning algorithms that solve the well-
known clustering problem and is applicable in a variety of disciplines, such as com-
puter vision, biology, and economics. It attempts to group individuals in a population
together by similarity, but not driven by a specific purpose.

The procedure follows a simple and easy way to cluster the training data points
into a predefined number of clusters (K ). The main idea is to define K centroids c,
one for each cluster.

Given a set of num Examples (n) observations {x°, x!, x"~!}, where each obser-
vation is an m-dimensional real vector, K-means clustering aims to partition the n
observations into K (<n) sets {s°, s!, s~} so as to minimize total intra-cluster
variance, or, the squared error function:

K

T=3""llx =P

k=1 xesk
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The K-means clustering algorithm is as follows:

1 : procedure train(x)

2 : initialize ¢ with K random data points
3 : while not converged:

4: centroids_kernel(x, c)

5 foreveryk =0,..., K — 1:

6

k— L
c = [s¥] ers"x

7 : procedure centroids_kernel(x, c)
8: foreveryk=0,..,K —1:
9: sk:{x:||x—ck“2§||x—ck/H2Vk’,0§k’§K—1}

The algorithm as described, starts with a random set of K centroids (c). During
each update step, all observations x are assigned to their nearest centroid, while
afterward, these center points are repositioned by calculating the mean of the assigned
observations to the respective centroids.

5.5.3 Hardware Implementation

Known techniques, including source-to-source optimizations (like loop transfor-
mations) and memory partitioning, were used to implement hardware designs that
exploit the inherent data parallelism of these ML formulas, on a macroscopic and
microscopic level. The first one is based on advancing coarse-level parallelism and
relies on the idea of executing multiple instances of the computational kernels at the
same time, each instance operating on a subset of the initial set. The second technique
includes implementing loop transformations to the code manually and selecting HLS
directives to exploit the data parallelism of the algorithms. A critical step to create
the optimal hardware design for a specific function, is to perform design space explo-
ration, with the available hardware resources, in terms of DSPs, BRAMs, etc., being
the limiting factor.

Figure 5.4 depicts a minimalistic block diagram of the Logistic Regression accel-
erator. We would like to note here that AXI4-Stream Accelerator Adapter IP is also
used as an intermediate module (while it does not appear in the figure), in order to
control the variable size of the data chunks. Other necessary IP blocks, like AXI4-
Stream Data Width Converter, etc., are also used, but are omitted from the diagram
for simplicity reasons. Four different AXI streaming channels are used for the com-
munication between the ARM cores and the hardware accelerator; two channels are
used for sending the data and one channel is used for sending the weights. One
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Table _5‘1 Resourc§ . Resources | Used Total Utilization (%)
allocation of the logistic
regression accelerator DSP 160 220 73

BRAM 73 140 52

LUT 40,612 53,200 76

FF 60,852 106,400 57

more channel is used to receive the results of the accelerator (gradients). Finally,
to speedup the execution time, the programmable logic hosts two instances of the
kernel (gradients_kernel) that can be running in parallel. Each instance consists
of four loop nests corresponding to the four operations in the gradient formula.

In terms of resource allocation, Table 5.1 shows the utilization of the hardware
resources in the Zynq FPGA, for Logistic Regression accelerator.
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Table 5.2 Resource

- Resources | Used Total Utilization (%)
allocation of the K-means
accelerator DSP 142 220 65
BRAM 135 140 96
LUT 34911 53,200 66
FF 52,207 106,400 49

The interface architecture of the K-means accelerator is similar with the one
depicted above for Logistic Regression, as it relies on AXI Streaming protocol as
well. We managed to fit also two instances of the centroids_kernel, restricting
through the max value of the k parameter of the algorithm, due to BRAM limitations.
Table 5.2 shows the allocation of the Zynq FPGA resources, for this accelerator.

5.5.4 SPyngq Integration and Python API

Both machine learning techniques have a common characteristic that makes them
ideal as means to explore the performance benefits of our heterogeneous cluster. Both
of them are iterative algorithms that make multiple passes over the data set, while
also allow the computations in each iteration to be performed in parallel on different
data chunks.

In SPynq, Gradient Descent algorithm can be parallelized by averaging the sub-
gradients over different partitions, using one standard Spark MapReduce in each iter-
ation. So partial gradients are computed in each worker (exploiting the Programmable
Logic), using different chunks of the training set, and then Master aggregates them
and updates weights. Similarly, in K-means, the computation of the partial sums
and counts for each new cluster is performed on the available Workers, and then the
Master aggregates the results and calculates the new centroids.

Taking into account and understanding the structure and the nomenclature of
Sparks MLIib, we developed new libraries for Logistic Regression with Gradient
Descent and K-means clustering, that take advantage of the PL that is available in
the PYNQ workers. As a result, when a Spark user wants to utilize the hardware
accelerator in an existing application, the main change that needs to be made, is the
replacement of Sparks mllib library, that is imported, with our mllib_accel one, as
shown in the following code example. Therefore, a user can speedup the execution
time of a Spark application by simply replacing the library package.
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from pyspark import SparkContext
from mllib.regression import LabeledPoint
from mllib_accel.classification import LogisticRegression

[...]
sc = SparkContext(appName = “Python LR”’)

trainRDD = sc.textFile(train_file, numPartitions).map(parsePoint)
testRDD = sc.textFile(test_file, numPartitions).map(parsePoint)

LR = LogisticRegression(numClasses, numFeatures) - train(trainRDD, chunkSize,
alpha, numlIterations)

LR test(testRDD)

sc.stop()

The first approach was to simply replace the mapper functions (gradients_kernel
and centroids_kernel) with Python APIs that drive the hardware accelerators. Inside
these new functions we used to download the equivalent overlay, create the necessary
DMA objects, store the data inside the corresponding buffers, perform the DMA
transfers and finally destroy them, free the allocated memory and return the results.
After profiling the applications, we concluded that most of the time (99%) is wasted
on writing the train RDD data to the allocated DMAs buffers.

However, since the data remain the same (cached) over the whole execution of the
training, we have managed and implemented a novel scheme that allows the persistent
storing of the RDD in contiguous memory, avoiding in-memory transfers every time
the accelerator is invoked. For this reason, we developed a new mapper function
that allocates and fills contiguous memory buffers with the training data, in order to
remain there for the rest of the application execution. So when the DMA objects are
created in each iteration, there is no need to create new buffers for them and fill them
with the corresponding data, they just get assigned the previously created ones. Also,
before destructing these DMA objects, their assigned buffers are set to ‘None’, so
that they remain intact and are not freed as it is shown in Fig.5.5.

Based on the above, we have created Python APIs which basically consist of three
calls:

e CMA (Contiguous Memory Allocate): This call is used for the creation of the
buffers and the further allocation of contiguous memory. Also at this point, the over-
lay is downloaded and the training data are written to the corresponding buffers.
Using cma, a new RDD, which contains only information about these buffers
(memory addresses, sizes, etc.), is created and persisted.

e kernel_accel (gradients/centroids): In this call, the DMA objects are created using
Xilinxs built-in modules and classes; previously allocated buffers are assigned
to DMAs, current weights/centers are written in memory and finally data are
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Fig. 5.5 Flow of the original and optimized method for the DMA transfers to the accelerator

transferred to the programmable logic. Gradients/(counts, sums) are computed in
return, buffers are dis-assigned from DMAs and the last ones are destructed.

e CMF (Contiguous Memory Free): This call is explicitly used to free all previously
allocated buffers.

It is important to note that the above-demonstrated APIs are Spark independent
and can be used in any python application.

5.6 Performance Evaluation

As a case study, we built an LR classification model with 784 features and 10 labels
and a K-means clustering model with 784 features and 14 centers, using 40 k available
training samples, for a handwritten digits recognition problem. The data are provided
by Mixed National Institute of Standards and Technology (MNIST) database [17].

To evaluate the performance of the system and to perform a fair comparison, we
built a cluster of four nodes based on the Zynq platform and we compared it with
four Spark worker nodes using the Intel Xeon cores. Table 5.3 shows the features of
each platform.

It is important to note that a single Spark executor JVM process requires most
of the available 512 MB RAM on PYNQ-Z1s, placing a restriction on the Spark
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Table 5.3 Main features of

Features Xeon Zynq
the evaluated processors
Vendor Intel ARM
Processor E5-2658 A9
Cores (threads) 12(24) 2
Architecture 64-bit 32-bit
Instruction set CISC RISC
Process 22nm 28 nm
Clock frequency |2.2 GHz 667 MHz
Level 1 cache 380 kB 32 kB
Level 2 cache 3 MB 512 kB
Level 3 cache 30 MB -
TDP 105 W 4 W
Operating system | Ubuntu Ubuntu

application, which requires main memory to cache and repeatedly access the working
dataset from FPGAs off-chip RAM once read from HDFS. This results in delays
during the execution as inevitably are performed transfers between the memory and
the swap file, which is stored inside the SD card. This memory restriction is also the
reason why we limit the number of Spark executors to 1 ARM core per node, thus
preventing both cores from performing Spark tasks simultaneously.

On the other hand, the Xeon system consists of 12 cores with 2 threads for each
core. The Spark cluster started on this platform allocates 4 out of 24 threads, as
worker instances, in order to compare it with the 4 nodes of the Pynq cluster.

We also compared the accelerated platform with the software-only scenario in
which the algorithm is executed only on the ARM cores. Such comparison is valuable
as there are applications, where only embedded processors can be used and big-core
systems like Xeon cannot be supported due to power constraints.

5.6.1 Latency and Execution Time

Figure 5.6 depicts the execution time of the Logistic Regression application running
on a high-performance x86_64 Intel processor (Xeon E5 2658) clocked at 2.2 GHz
and a Pynq cluster which makes use of the Programmable Logic, for an input dataset
of 40,000 lines split in chunks of 5000 lines, for various numbers of GD iterations.
The operating frequency of the Zynq FPGAs is 142 MHz, while the on-chip ARM
cores are clocked at 666 MHz. As it is shown, the acceleration factor is equivalent
to the number of the iterations. An equivalent diagram for K-means application is
shown in Fig.5.7.
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Fig. 5.6 Logistic regression speedup versus the number of the iterations (Intel XEON vs. Pynq)

Table 5.4 Execution time (s) of the worker (mapper) functions

Worker type Data extraction GD algorithm K-Means algorithm
computations (per computations (per
iteration) iteration)

Intel XEON 7.5 2.6 33

ARM 80 46.6 41.5

Pynq 80 (ARM) 0.51 (FPGA) 0.54 (FPGA)

In more detail, in the PYNQ-Z1 boards the data extraction part, for the Logistic
Regression application, takes about 80 s to complete, while every iteration of the
algorithm is completed in 0.51 s, since the train input data is already cached into the
previously allocated buffers. On the other hand, Xeon CPU reads, transforms, and
caches the datain only 7.5 s, but every Gradient Descent iteration takes approximately
2.6 s. This is the reason why the speedup actually depends on the number of iterations
that are performed. For this specific example the LR model converges, and achieves
up to 91.5% accuracy, after 100 iterations of the algorithm, in which up to 2 x system
speedup is achieved compared to the Xeon processor. However, there are cases in
which much higher number of iterations is required, until the convergence criteria is
met, and thus much higher speedup can be observed.

For the K-means clustering application, the results are also similar. The data
extraction in this application requires the exact same time with the Logistic Regres-
sion one, as the same dataset is used, while there is also a significant speedup (up to
2.5x) of the iterative algorithm computations. Again 100 iterations are examined
here as the default value that is used in our library (if not specified by the user),
however metrics for different values of this parameter are also presented.

Table 5.4 shows the execution time of the main mapper functions, which are
executed on the worker nodes. In the Xeon platform and the ARM-only case, both
the data extraction and the algorithm computations are performed on the CPUs,
while in the Pynq workers the data extraction is executed on the ARM core while
the algorithmic part is offloaded to the programmable logic.
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Fig. 5.7 K-means speedup versus the number of the iterations (Intel XEON vs. Pynq)
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Fig. 5.8 Logistic regression speedup versus the number of the iterations (ARM vs. Pynq)

Figures 5.8 and 5.9 show the speedup of the accelerated execution compared to
the software-only solution running on the same cluster but using only the ARM
processors. In this case, we can achieve up to 36 speedup for Logistic Regression
and 31x for K-means, compared to the software-only case, which shows that it is
definitely crucial to provide accelerator support for future embedded data centers.

5.6.2 Power and Energy Consumption

To evaluate the energy savings, we measured the average power running the algo-
rithm both in the SW-only, and the HW-accelerated cases. In order to measure the
power consumption of the Xeon server, we used Intel’s Processor Counter Monitor
(PCM) API, which, among others, enables capturing the power consumed by the
CPU and DRAM memory for executing an application. We also measured the power
consumption in the accelerated case using the ZC702 Evaluation board, which hosts



104 C. Kachris et al.

KMeans (1 Master / 4 Workers)

7000
6000
5000
4000

Time (sec)

3000
2000
1000

Q. 8 ¥ Yo P % B O T
2 % 9Py Y Y

iterations
NIX¥ SW-only (ARM) 7277/ HW accelerated ==== Speedup

Fig. 5.9 K-means speedup versus the number of the iterations (ARM vs. Pynq)

Logistic Regression (1 Master / 4 Workers) &
45000 v
40000 S o
35000 Ko
30000 l
25000
20000
15000
10000
5000

Energy (Joule)

150

iterations

XIX¥SW-only (Intel XEON) #2277 HW accelerated == Energy efficiency

Fig. 5.10 Logistic regression energy consumption based on the number of iterations (Intel XEON
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the same Zynq device as the PYNQ-Z1 board, taking advantage of the on-board
power controllers.

Figures 5.10 and 5.11 show the energy consumption of the Xeon processor com-
pared to the Pynq cluster. The average power consumption of the Xeon processor and
the DRAMs is 100 W, while a single Pynq node (both the AP SoC and the DRAM)
consumes about 2.6 W during the data extraction and 3.2 W during the hardware
computations. In that case, we can achieve up to 23 x better energy efficiency due to
the lower power consumption and the lower execution time.

In Figs.5.12 and 5.13 is depicted the energy consumption comparison between
the SW-only (ARM) and HW-accelerated execution of the application on the Pynq
cluster. It is clear that the average power consumption of the accelerated case is
slightly higher than the power consumption of the ARM-only one, because of the
need to power supply also the programmable logic. However, due to the significant
much higher execution time of the ARM-only solution, eventually, up to 29 x lower
energy consumption is achieved.
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Fig. 5.11 K-means energy consumption based on the number of iterations (Intel XEON vs. Pynq)
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5.7 Conclusions

Hardware accelerators can improve significantly the performance and the energy effi-
ciency of Machine Learning applications. However, currently data analytics frame-
works like Spark do not support the transparent utilization of such acceleration mod-
ules. In this study, we demonstrate a novel scheme for the seamless utilization of
hardware accelerators using the Spark framework in a cluster of All-Programmable
SoCs.

For the evaluation, we have implemented two hardware accelerators, one for
Logistic Regression and one for K-means, and we have efficiently integrated it with
Spark. The accelerators can be easily utilized by a Spark user, as the main change
that needs to be made in the application, is the replacement of the library that is
imported. The results show that the proposed system can be used in high-performance
systems to reduce the energy consumption (up to 23x) and also reduce up to 2.5 x
the execution time, while in embedded systems it can achieve up to 36x speedup
compared to the embedded processors and up to 29 x lower energy consumption.

The results also show that the proposed framework can be utilized to sup-
port any kind of hardware accelerators in order to speedup the execution time of
computational-intensive machine learning applications based on Spark, and prove
that hardware acceleration and thus SW/HW co-design is in fact a valid solution
when software acceleration techniques meet their limits.
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Chapter 6 ®
M2DC—A Novel Heterogeneous oo
Hyperscale Microserver Platform
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Schlitt, Christian Pieper, Udo Janssen, Holm Rauchfuss, Giovanni Agosta,
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Joao Pita Costa, Mariano Cecowski, Robert Plestenjak, Justin Cinkelj,

Loic Cudennec, Thierry Goubier, Jean-Marc Philippe, Chris Adeniyi-Jones,
Javier Setoain and Luca Ceva

6.1 Introduction

Inrecent years, the market of server platforms and solutions for data centers is quickly
evolving to follow the fast pace of data center capacities’ growth. This growth is
needed to serve demands for cloud services and huge network traffic. These needs
are mostly imposed by emerging applications and technologies such as advanced
mobile devices, Internet of Things (IoT), 5G, virtual and augmented reality (VR/AR),
machine learning, and artificial intelligence.

To cope with challenges and scale needed for such demanding applications, data
center operators and technology vendors provide new solutions and advance best
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practices to ensure high availability, efficiency, and performance. This leads to cre-
ation of hyperscale data centers. Their scale allows to use very efficient technologies,
often dedicated solutions and hardware, and make it economically viable. On the
other hand, recently the paradigm of the so-called edge data centers (putting smaller
data centers closer to local data) gains importance as it is an answer to huge amounts
of data being generated and requested by mobile end users and emerging [oT systems.
Although hyperscale and edge solution are opposite approaches, they have common
challenges to address. Both hyperscale and edge solutions require high efficiency,
low environmental impact as well as advanced monitoring with self-healing and self-
optimization functions to lower costs of maintenance and ensure high availability.
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This is caused by the fact that both in case of huge infrastructure and when using
many smaller remote data centers the maintenance is difficult and power usage plays
an important role.

Another trend is that the required performance and efficiency can be delivered
by customization of heterogeneous systems to the needs of specific yet important
classes of applications. This customization must be, however, as easy and cheap as
possible to make it possible to apply in a large scale.

M2DC aims to address these needs by providing a flexible microserver platform
that can be applied to develop various types of appliances optimized for specific
classes of applications. As specified in [ 14], the targeted features of M2DC appliances
include rich possibility of customization, energy efficiency, relatively low cost, and
facilitated maintenance (cf. Fig.6.1).

Main advantages of the appliances that are developed in M2DC include a flex-
ible hardware platform based on standard interfaces and an innovative design that
allows integration of a wide spectrum of microservers: ARM-based multi/many-
cores, typical x86 modules, Multiprocessor System-On-Chips (MPSOCs), recon-
figurable devices (FPGAs), and GPUs. Additionally, the architecture introduces a
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Fig. 6.1 With appliances based on its heterogeneous microserver platform, M2DC targets opti-
mization of energy efficiency, performance, and TCO

concept of System Efficiency Enhancements (SEEs)—built-in functions that enable
the use of hardware acceleration in a seamless way. The main role of SEEs is to
enhance efficiency, performance, reliability, or security of the micro-server platform
at possibly lowest overhead in terms of performance, power, and configuration effort.
Examples of SEEs developed within M2DC include advanced platform monitoring,
pattern matching for events in the system, communication encryption, image pro-
cessing, artificial neural networks, and low-latency communication.

On top of the hardware and firmware layer, M2DC develops a middleware and
software tools helping to efficiently manage the platform. In this way, the M2DC
appliances go beyond the hardware into the whole software stack and ecosystem of
tools. To enable easy integration into existing data centers, the middleware contains
extensions of and components with interfaces to OpenStack [15]. Additionally, spe-
cial extensions and/or integration work has been done on other popular tools, for
instance, for monitoring Zabbix, queuing systems SLURM, etc. M2DC develops a
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suite of tools and algorithms for node provisioning and intelligent power and thermal
management.

To verify the flexibility and benefits of the platform, several appliances for impor-
tant usage scenarios are being developed, namely for specific classes of applications
such as image processing and IoT data analytics as well as for Platform as a Service
(PaaS) clouds and High Performance Computing (HPC) centers.

Organization of the chapter The rest of this chapter is organized as follows.
In Sect. 6.2, we provide an overview of the M2DC modular microserver hardware
and software architecture. In Sect. 6.3, we describe the range of application scenar-
ios, which are used to verify and demonstrate the M2DC technology. Finally, in
Sect. 6.4, related work in other European projects is reviewed, focusing on projects
that build the baseline for the developments within M2DC, and in Sect. 6.5 we draw
our conclusions.

6.2 Architecture Overview

In addition to a steady increase in performance and energy efficiency, customers
and applications for HPC and cloud appliances request heterogeneous platforms that
can be tailored to their specific requirements, thus enabling further optimization of
system efficiency and performance. Therefore, important features of the heteroge-
neous hyperscale server platform that is developed within the M2DC project include
high resource efficiency combined with high scalability, high density and modularity,
enabling easy adaptation of the system toward the workload requirements of a wide
variety of applications. Compute modules range from low-power architectures to
high-performance microservers, which can be extended by reconfigurable and mas-
sively parallel hardware accelerators utilizing a dedicated high-speed, low-latency
communication infrastructure. Within the project, efficiency in terms of performance,
energy, and TCO will be demonstrated by a representative mix of turn-key appliances
that are supported by an intelligent, self-optimizing management infrastructure.

Based on the customer requirements and on the facilities of the data centers, the
M2DC platform can be easily configured, providing low-power solutions that can be
easily integrated into existing data center environments on the one hand and provid-
ing unparalleled density of server nodes in new data center environments, offering
the required cooling and power facilities, on the other hand. Although developed
in an EU project, the M2DC modular microserver system architecture is not just a
research platform, but also targets reliability and maintainability levels of a com-
mercial product. A blade-style system approach is chosen, easing maintenance and
providing hot-swap and hot-plug capabilities (cf. Fig.6.2).

Communication facilities will be provided on three levels within the M2DC server:
On level one, a dedicated monitoring and control network provides facilities for man-
agement of the core functionalities based on a reliable embedded bus connecting all
parts of the M2DC server system as well as an integrated IPMI/I-KVM solution
for every microserver. On level two, a full-featured Ethernet-based communication
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Fig. 6.2 The M2DC server combines up to 45 high-performance or 240 low-power microservers
in a single 3 RU chassis

backbone providing multiple 1 and 10 Gbit/s links to each microserver is integrated.
A key feature of M2DC is the third level of communication, integrating a dedicated
infrastructure for high-speed, low-latency communication into the M2DC server.
Based on high-speed serial transceivers and PCle switching, this infrastructure pro-
vides high-speed, low-latency communication between the microservers.

The monitoring and control system manages all core functions of the M2DC server
system, i.e., it controls the power states of all components, enables a controlled sys-
tem startup and shutdown, and manages the multilevel communication infrastructure
according to the need of applications or appliances. In addition, it monitors the health
of the server unit by providing fast and easy access to the more than 10,000 sensor
values in a single rack (e.g., power, voltage, temperature on device level, microserver
level, as well as server level). An integrated distributed network of microcontrollers
is used for preprocessing the huge amount of sensor data, providing the user exactly
the information he requires and enabling smart and effective power and energy man-
agement solutions. Therefore, new deployment and management technologies are
combined with a proactive power management for providing QoS-aware dynamic
performance settings, exploiting the heterogeneity of the server platform. Addition-
ally, new methods for thermal management are developed focusing on the specific
requirements and capabilities of heterogeneous architectures, enabling runtime adap-
tation of their behavior at all levels, ranging from a single microserver to the complete
data center. Based on the actual requirements, optimization goals can vary from per-
formance maximization to minimization of power/energy requirements or hotspot
avoidance.

ARMvS8-based multicore processors both from the server domain and from the
mobile domain significantly increase the energy efficiency compared to state-of-the-
art x86-based server platforms. Therefore, they have been selected as one of the
key components supported by the M2DC server platform, offering a good compro-
mise between energy efficiency and ease of programming. When targeting reduces in
energy consumption by an order of magnitude or even more, CPU-based approaches
typically are outperformed by massively parallel or reconfigurable architectures like



6 M2DC—A Novel Heterogeneous Hyperscale Microserver Platform 115

GPUs, MPSoCs, or FPGAs. It has been shown already that these architectures can
provide the required performance/power ratios but typically they are integrated as
hardware accelerators, directly attached to a dedicated host and optimized for a
specific application. The M2DC server targets a more flexible approach, integrating
dynamically reconfigurable FPGAs as well as GPUs for System Efficiency Enhance-
ments (SEE) targeting both application acceleration and system level functionalities
like efficient integrated security features and increased dependability. On hardware
level, the flexible integration of accelerators via the high-speed, low-latency network
enables pooling of accelerator resources as well as assignment to changing hosts,
even at runtime.

For proving the efficiency of the platform and its supporting software infrastruc-
ture, turnkey appliances are developed for selected applications providing an opti-
mized mapping between software and heterogeneous hardware components. Depend-
ing on the application requirements, the corresponding appliances are based on dif-
ferent middleware layers and techniques, mostly running directly on the operating
system without virtualization overhead. The targeted “bare metal cloud” approach
dynamically installs a desired operating system combined with the required libraries
and applications onto physical nodes. Nevertheless, if an appliance benefits more
from the flexibility of a virtualized and containerized cloud-like approach, this is
also supported within M2DC. A base appliance providing an Infrastructure-as-a-
Service (IaaS) and Metal-as-a-Service (MaaS) layer is provided as the basis for the
personalized appliances and can be directly provided to users who want to install
their own individual applications.

The targeted applications are analyzed in M2DC range from general cloud com-
puting via image processing and big data analytics to HPC applications, representing
a wide variety of different requirements, as discussed in Sect. 6.3. To improve usabil-
ity, reuse, and user acceptance, all relevant interfaces like the operating system man-
agement and the appliance management are based on widely used standards. This
includes required interfaces for smooth integration with DCIM and HPC manage-
ment software allowing fine-grained monitoring and a comprehensive set of power
management functions.

6.2.1 M2DC Server Architecture

The M2DC architecture enables the integration of different types of microservers.
While existing microserver platforms mostly support a single, homogeneous
microserver architecture, M2DC supports the full range of heterogeneous microserver
technology from CPUs to FPGAs, which can be seamlessly combined into a single
chassis. The M2DC server architecture supports microservers based on x86 (e.g.,
Intel Xeon), 64-bit ARM mobile/embedded SoCs, 64-bit ARM server processors,
FPGAs, and GPUs, as well as other PCle-based acceleration units. This heterogene-
ity can be used to configure and build an optimized processing platform based on
the needs of the application. As shown in Table 6.1, all the main microservers (CPU,
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Fig. 6.3 Overview of the M2DC server architecture

GPU, and FPGA) are available in a low-power as well as in a high-performance
variant. Like the big-little approach in today’s mobile processors, this feature allows
to increase the energy efficiency even more by dynamically switching, e.g., between
64-bit ARM server processors and 64-bit ARM mobile SoCs depending on the cur-
rent load situation of the application.

As depicted in Fig. 6.3, the M2DC server features a modular approach. This mod-
ularity ensures flexibility and reusability, thereby ensuring high levels of maintain-
ability. Microservers are grouped on a baseboard or carrier blade, which supports
hot-swapping and hot-plugging of microservers, similar to a blade-style server. Using
existing computer-on-module or server-on-module form factors, which are estab-
lished in the industry, allows reuse of already existing microserver developments.
This eases integration of third-party microserver modules, providing a broad set
of commercial of the shelf microserver modules readily available for usage in the
M2DC server. Fine-grained power monitoring and control within the system on hard-
ware level enables sophisticated high-level management of power, performance, and
temperature. The power supplies of the M2DC system are foreseen to be shareable
on rack level. Exploiting this feature enables improved energy efficiency as well as
higher system reliability due to added redundancy. The distributed monitoring, con-
trol, and maintenance infrastructure are accessible via a web interface and a RESTful
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API—allowing full integration into DCIM and orchestration frameworks. Despite its
modularity, M2DC features a scale-out approach which supports a high microserver
density: up to 45 high-performance or 240 low-power microservers are supported in
a single 3 RU chassis.

Apart from the management and monitoring infrastructure, each microserver is
connected to a scalable Ethernet-based network. This network provides the basic
communication backbone for the different microservers, offering multiple 1 and 10
Gbit/s links to every microserver. The Ethernet network is internally switched by
a hierarchical, multilevel switching infrastructure; all data center agnostic features,
e.g., VXLAN, RoCE, or iWARP are supported. The supported upstream bandwidth
toward the top of the rack (ToR) switch is up to 120 Gbit/s, combining three 40
Gbit/s links. In addition to the Ethernet communication infrastructure, a dedicated
high-speed, low-latency communication network is integrated into the M2DC next-
generation modular microserver architecture, which is described in more detail in
Sect. 6.2.3.

6.2.2 M2DC Microservers

As shown in Table 6.1, the COM express [16] form factor is used as the basis for
all high-performance microservers, while the Jetson standard from NVIDIA and the
Apalis standard from Toradex [19] are used for the low-power microservers. The
tables list some examples of possible modules, and many others are available. The
COM express form factor supports compact modules of just 125 mm x 95 mm. COM
express type 6 and type 7 modules are supported, enabling direct integration of com-
mercial of the self-modules, e.g., x86 modules based on Intel’s Skylake/Kabylake
architecture. Two new high-performance microservers are developed within M2DC,
targeting highly resource-efficient platforms for next-generation data centers, utiliz-
ing FPGAs and ARM-based server processors, respectively.

The high-performance ARMv8 microserver is based on an ARM 64-bit SoC,
integrating 32 Cortex-A72 cores running at up to 2.4 GHz. The memory controller
supports four memory channels populated with DDR4 SO-DIMMs running at 2133
MHez. In total, each microserver integrates up to 128 GB RAM. For connectivity, the
microserver provides two 10GbE ports with RoCE support, in addition to a GbE port
which is mainly used for management purposes. Up to 24 high-speed serial lanes
are available for connection of peripherals or for high-speed, low-latency communi-
cation to other microservers in the M2DC server. Using these high-speed links, also
multi-socket configurations of the ARMv8 microserver are supported. Additionally,
a wide variety of fixed-function units are integrated into the SoC, providing highly
resource-efficient acceleration of compression/decompression or security algorithms
like asymmetric encryption.

FPGAs are becoming more and more attractive in HPC and cloud computing due
to their potentially very high-performance combined with moderate power require-
ments. High-level synthesis and OpenCL support, which is becoming more and more
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mature, opens additional application scenarios since programming is no longer lim-
ited to hardware specialists. The FPGA-based high-performance microserver that is
developed within M2DC will be a full-featured COM Express module, comprising
an Altera Stratix 10 SoC with an integrated 64-bit quad-core ARM Cortex-A53 pro-
cessor. Dedicated DDR4 memory is provided for the CPU as well as for the FPGA
fabric, supporting up to four memory channels and up to 64 GB. The high-speed
transceivers integrated in the FPGAs are used for PCle interfacing to communi-
cate with other processor modules, and for high-speed, low-latency communication
between high-performance FPGA-based microserver modules.

SoCs targeting the mobile market are promising platforms for data centers when
focusing on energy efficiency, especially due to a large amount of integrated accel-
erators, including GPGPUs, fixed function units, e.g., for video transcoding or even
FPGAs. The M2DC server enables integration of modules based on the Jetson stan-
dard from NVIDIA, which is used for the currently available Tegra SoCs (Tegra-X1)
and the upcoming generations from NVIDIA. Additionally, the Apalis standard from
Toradex [19] is supported. With its small form factor of just 82 x 45 mm, it allows a
very high density of microservers. In addition to commercially available Apalis mod-
ules from Toradex, modules have been developed at Bielefeld University integrating
Samsung Exynos5250 SoCs and Xilinx Zynq7020, respectively [11].

6.2.3 High-Speed Communication

In today’s implementations, a hardware accelerator is typically attached physically
to the PCle lanes of a CPU node. Using the high-speed, low-latency communication
infrastructure of the M2DC server, a hardware accelerator can be flexibly attached to
any node within the system. In contrast to state-of-the-art implementations, the com-
munication infrastructure can be used not only to connect CPUs to hardware accel-
erators but also CPUs to CPUs or accelerators to other accelerators. Furthermore, it
is possible to divide the links of certain accelerators, e.g., connecting an accelera-
tor to both a CPU and another accelerator. Thus, accelerators can be combined into
a large virtual unit. At runtime, the communication topology can be reconfigured
and adapted to changing application requirements via the middleware. Apart from
point-to-point communication, the flexible communication infrastructure also allows
efficient multi- or broadcast communication topologies.

In more detail, the high-speed, low-latency communication infrastructure of the
M2DC server is based on two technologies: asynchronous crosspoint switches that
allow connections between microservers independent of the used protocol and PCI
Express switches, which are used for packet routing based on PCI Express. These
two technologies are combined on baseboard level as well as on the chassis back-
plane. Additionally, the whole communication infrastructure can be scaled across
rack level by using additional connectors located at the back panel. In addition to
direct communication between the different microservers via PCle, the platform also
supports connection to storage or I/O extensions. This enables easy integration of
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PCle-based extension cards like GPGPUs or storage subsystems, which can also be
shared across multiple microservers via the multi-root I/O virtualization (MR-IOV)
feature of the PCle communication infrastructure.

As mentioned above, in addition to PCle, the M2DC server supports direct links
between microservers, using asynchronous crosspoint switches independent of the
used protocol. This feature is of particular interest for FPGAs, as these devices sup-
port low-level point-to-point communication schemes not involving the overhead of
protocols like PCle. For example, use cases include a direct communication infras-
tructure between multiple FPGAs as well as multiple PCIe endpoints implemented
on the FPGA, used for communication toward the processor-based microservers.

6.2.4 System Efficiency Enhancements

System Efficiency Enhancements (SEEs) are integrated into the M2DC server plat-
form to increase its efficiency, e.g., with respect to performance or energy but also tar-
geting reliability or security. The SEEs are seamlessly integrated hardware/software
components that utilize the embedded FPGA and GPU accelerators together with
the flexible high-speed interconnect to provide a wide variety of mechanisms for
global system efficiency enhancements. Three categories of SEEs are developed in
the project: communication SEEs dedicated to acceleration of communication and
runtime functions, application SEEs dedicated to accelerating application-domain
compute kernels, and system SEEs dedicated to enhancing the platform efficiency
and reliability. Depending on the actual requirements, the accelerators can dynami-
cally adapt their behavior, e.g., toward performance improvements, power reduction,
and dependability.

Communication SEEs target optimization of the internal communication within
the M2DC server, e.g., data transfer and synchronization between tasks or processes
of an application. Envisioned SEEs include MPI acceleration, remote DMA, cluster-
wide available low-latency global scratchpad memory as well as acceleration of
various cache coherency protocols. From the application level, these SEEs are fully
transparent.

In M2DC, application SEEs are typically implemented using OpenCL, CUDA, or
RTL/HLS. Based on the targeted appliances, first implementations include FPGA-
based accelerators for image processing. Additionally, machine learning is targeted,
on the one hand, based on deep learning and on the other hand based on self-
organizing feature maps, especially utilizing the high-speed, low-latency commu-
nication of the M2DC server platform to enable efficient scalability for large neural
network implementations.

System SEEs include enhancements for monitoring, security, and reliability that
are provided independent of the actual application. These SEEs will, e.g., assist
collecting and (pre-)processing of monitoring data in real time allowing runtime
optimizations based on in-system data mining since optimal operation of an appli-
ance may depend on specific ambient characteristics (temperature, power, hot-spots,



6 M2DC—A Novel Heterogeneous Hyperscale Microserver Platform 121

etc.). Security is enabled by encryption SEEs, both symmetric and homomorphic
encryptions, as well as an intrusion detection SEE. Efficient OpenCL implemen-
tations of cryptographic primitives [1-3], which can be transparently deployed on
GPUs or on FPGAs, are developed utilizing OpenCL-based synthesis tools. This
strategy allows optimization of a single efficient implementation, which is transpar-
ently deployed on any targeted hardware provided as a service, allowing also higher
flexibility, should need to change the employed cryptographic primitives arise.

6.2.5 Middleware Stack

Building on the Linux operating system (e.g., Linaro for ARM-based compute mod-
ules) and other well-known software infrastructures, M2DC will also feature opti-
mized runtime software implementations when needed, to improve the efficiency of
the system toward application domains such as cloud computing, big data analytics,
and HPC applications. At the heart of the middleware for “bare metal cloud” sits
OpenStack Ironic [15], which provides bare metal (micro)server software deploy-
ment and lifecycle management for those. OpenStack Ironic will be modified and
complemented by other OpenStack components for handling the dynamic and het-
erogeneous nature of the M2DC microserver nodes, in particular, the hardware accel-
erators. It will interact with the M2DC chassis controller via a DMTF Redfish API.

Due to its heterogeneity, power density, and thus, possible thermal imbalance,
the M2DC microserver requires advanced resource and thermal policies that allow
achieving significant energy savings while maintaining high reliability under various
conditions. These conditions and challenges include workload fluctuations, manag-
ing hot spots, power leakage, and finding a trade-off between workload and resource
management. To address these issues, energy- and thermal-aware techniques ben-
efit from a set of sensors located inside the server and monitoring tools together
with corresponding power and thermal models used to determine trends in their
changes. These models are supported with benchmarking data and statistical method
increasing their accuracy. By analyzing collected data and predicting future trends,
the resource and thermal management module performs energy optimizations. The
optimization methods consist of dynamic power management of M2DC microserver
components including actions like switching particular modules off, management
of processors’ C-states, and dynamic addition/removal of cores. Moreover, dynamic
voltage and frequency scaling (DVFS) is applied (if possible) for adjusting the speed
of individual processors to meet thermal constraints. The resource and thermal man-
agement module also supports power capping mechanisms that allow users to provide
limitations for the maximum power drawn by the system. Finally, a dedicated fan
controller is in charge of adjusting the fans speed in order to keep all the components
within the desired temperature range and optimize their power usage. This is done
continuously, in a proactive way and for each fan separately. All these components



122 A. Oleksiak et al.

take their control actions through a dedicated monitoring system and OpenStack
services responsible for reading sensor values and providing all information to the
management modules.

6.3 Use Case Scenarios

One of the most important M2DC objectives is to deliver appliances well suited
for specific classes of popular or emerging relevant applications. Thus, a crucial
part of the strategy of the project is to steer the joint development of both software
and hardware by specific real-life use cases identified by the project partners. Such a
continuous validation will enable M2DC to deliver optimized appliances customized
to relevant and real-life workloads and use cases. The M2DC use cases have been
carefully selected to ensure their potential-wide uptake, market relevance, and special
importance for future computing and data processing needs. In the following, the
use cases targeted in M2DC are briefly discussed, describing their goals, technical
aspects, and how they benefit from the project.

6.3.1 Low-Cost Image Processing

Low-costimage processing is a use case based on actual requirements from the Online
Photo Services (OPS) of CEWE, where customers are able to prepare and order photo
print products online, using a web browser. All requested image processing operations
like scaling, cropping, or rotating are performed in data centers, independent of
the customer’s hardware. To satisfy the commonly high usability standards of on-
demand services, all tasks must meet strict response time constraints, requiring a fast
execution of image processing tasks and therefore constantly available computing
resources. Due to high workload variance based on fluctuating user demand, there
are times with low workloads offering great energy saving potentials. However, as
workload varies even on a daily basis (e.g., peak in evening vs. bottom at night), a
static workload redistribution approach is not sufficient.

For this purpose, the heterogeneous hardware approach of M2DC will be utilized
to realize a flexible and more energy-efficient image processing appliance that ben-
efits from different power/performance ratios. The image processing tasks will be
adopted to run on x86, ARM, and FPGA/GPGPU hardware, controlled by a service-
oriented API. Anintelligent workload management deploys queued tasks on the most
efficient hardware and even controls server states using long-term forecasts based on
historical workload data, to reduce the amount of idling servers.

While the mentioned approach is rather specific, the low-cost image processing
will also be offered as a more generic appliance for efficient on the fly thumbnail
generation for a large amount of images. This can be integrated into existing data
center ecosystems more easily, addressing a wider range of customers.
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6.3.2 IoT Data Analytics for Transport

The transport application domain is characterized by a vast amount of data that are
currently underused—each vehicle (cars, motorbikes, and trucks) can be sensorized
to collect a wide range of data, such as GPS position and accelerometer readings.
Currently, non-automotive companies are offering a support service that automati-
cally detects accidents and sends requests for assistance, by leveraging an IoT system
composed of a sensing unit that includes an accelerometer (to detect crashes), a GPS
unit providing localization, and a data processing and communication unit. The same
companies are expanding the service to collect a wider range of data beyond acci-
dent detection, with the goal of providing a full driver behavior profiling, which can
be used to offer added-value services, such as personalized insurance pricing. Such
extension implies a massive increase in the amount of stored and processed data. To
this end, the M2DC project aims at offering a solution for optimizing the TCO of
cloud servers employed for the storage and processing of [oT data, while maximizing
the amount of data processed within a given power/energy budget [14].

The strategy adopted in M2DC is to leverage SEEs for data analytics to optimize
the execution of driver behavior profiling. These analyses process the data from a set
of cars, extracting features such as aggressive driving (characterized by exceeding
acceleration thresholds) or overspeeding behaviors (the propension to ignore speed
limits), to classify trips performed with a single car as belonging to different drivers, or
to classify drivers in different categories based on the driver behavior. As an example
of such an application, consider the identification of different drivers sharing the same
car. It is possible to extract from the collected data information about the behavior
of the driver, such as brusque acceleration or deceleration patterns, propension to
speeding, comparing them to the average behavior of that car on a given trip (taking
into account the type of road and the time of day to distinguish behavioral changes
induced by, e.g., traffic or road conditions). By applying classification algorithms
such as k-means on such features, it is possible to identify whether the behaviors
belong to a single driver or to multiple drivers.

The underlying technology is a modular compilation and runtime toolchain
(derived from LLVM) interfacing the R language to an heterogeneous data flow
execution runtime (currently based on StarPU runtime software [5]). A dedicated
version of the compilation toolchain will be developed on top of M2DC hardware
and middleware, including new transformation and analysis passes at compiler level.
The existing runtime will be extended to support the hardware and to use capabilities
of the hardware/middleware pair. The underlying runtime, similarly to the exist-
ing one, will also be used to build programs without any compiler support and the
transformation passes will be performed at IR (Intermediate Representation) level,
enabling the use of other languages to target the same toolchain at a lower cost (only
the front end would need to be rewritten).



124 A. Oleksiak et al.

6.3.3 Energy-Optimized Platform as a Service

Platform as a Service (PaaS) allows customers to run their applications on a full-
stack environment, and therefore the service needs to support the most popular pro-
gramming languages and web applications. In this scenario, the computing power
is delivered by isolated runtime containers that are spawned on demand by cloud
orchestration platforms. Low-power servers and precise power and thermal manage-
ment are crucial for keeping low-energy costs while ensuring high availability and
required QoS. The cloud appliance is designed to meet these requirements.

6.3.4 High-Performance Computing

High-performance computing (HPC) software tools are among the most time, energy,
and resource consuming types of applications. Therefore, it is vital to address this
domain, especially as M2DC is all about reducing energy consumption and total
cost of ownership. A good representative in this area is EULAG—a numerical HPC
solver offering a large spectrum of application fields, such as orographic flows, urban
flows, simulation of contamination dispersion, investigation of gravity waves, and
many others [7]. EULAG is currently used at Poznan Supercomputing and Network-
ing Center for different scenarios, e.g., air quality monitoring and precise weather
prediction. As mentioned above, EULAG is a good example of HPC application as
it implements stencil-based computations, requires a low-latency network, and can
be efficiently parallelized on modern computational architectures [8, 18]. Therefore,
along with traditional HPC benchmarks, it will help to evaluate the computational
and networking aspects of the M2DC platform. Based on this, TCO as well as energy
efficiency optimized hardware configurations will be proposed for the HPC appli-
ance. Importantly, the appliance will be easy to integrate with a typical data center
ecosystem (dimensioning, cooling, networking, and software interfaces) and will
be shipped with optimized software libraries for HPC, e.g., MPI with RDMA sup-
port, BLAS, etc. It is expected that due to optimized reconfigurable communication
and the use of hardware acceleration, the HPC appliance will greatly improve the
performance per Watt for complex distributed applications.

6.3.5 Machine Learning

As a high-impact benchmarking application with a high level of parallelism, neural
network models are foreseen to be ported and evaluated on the M2DC platform.
Even though the project does not officially work on a dedicated machine learning
appliance, application SEEs for important neural network algorithms are developed
and integrated into the M2DC server to prove the efficiency of it also in this vital
area.
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Two neural network implementations are developed within the project. On the
one hand, an FPGA-based accelerator for deep neural networks is integrated into the
platform, capable of efficiently accelerating a wide variety of neural network com-
puting chains including various classifiers like radial basis functions with Gaussian
activation function, and multilayer perceptrons with sigmoid, tanh or rectified linear
functions. On the other hand, variants of self-organizing feature maps, an efficient
tool for data mining [12], will be implemented and evaluated. This implementation
is especially targeting large neural networks, thus utilizing the concept of pooling
FPGA resources of multiple microservers in one large virtual accelerator.

Additionally, the emulation of spiking neural networks, as developed, e.g., in the
Human Brain Project [4], is targeted as a further benchmark for the M2DC server
platform. Like HPC EULAG, the neural network implementations will be used to
evaluate the scalability of architecture, specifically focusing on the impact of the
integrated low-latency communication.

6.4 Related Works

To achieve its ambitious objectives, M2DC takes as baseline the results of different
EU projects, in which some of the members of M2DC participate.

Based on the results of FiPS [11, 13], the management of heterogeneity in the
server infrastructure is developed. Additionally, M2DC uses lessons learned from
the RECS3.0 prototype that has been developed within FiPS as a basis for the devel-
opment of the M2DC server. RECS3.0 in turn is based on RECS2.0, a result of
CoolEmALI [6]. Since RECS3.0 is also based on the computer on module standards
COM Express and Apalis, the platform is used for early evaluation of new microserver
module developments as well as for software development in the M2DC testbeds

The Mont-Blanc project [17] used commodity energy-efficient embedded technol-
ogy for building a prototype high-performance computing system based on ARMv7
(32-bit) System-on-Chips. Next-generation system architecture designs based on
ARMVS8 (64-bit) technology are explored in the Mont-Blanc 2 and Mont-Blanc 3
projects. These projects have been pivotal in building up the software ecosystem
required for ARM-based HPC: system software, networking and communication
libraries, and support for heterogeneous processing and compute acceleration, much
of which is also required for server applications.

The FP7 project EUROSERVER [9] advocates the use of state-of-the-art low-
power ARM processors in a new server system architecture that uses 3D integration
to scale with both the numbers of cores, and the memory and I/O. While M2DC does
not design new chips, the M2DC server is an ideal platform for easy integration of
new processor and SoC developments. In addition to standardized interfaces and form
factors, the flexible high-speed, low-latency communication infrastructure enables
tight yet flexible coupling of new compute resources.

Results from the FP7 project DEEP-ER [10] concerning the benefits of nonvolatile
memory storage are of high interest for high-end versions of M2DC appliances,
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especially those aiming at executing HPC applications. Additionally, advanced
checkpointing techniques could improve the reliability of M2DC appliances, if appli-
cable to microserver-based systems.

6.5 Conclusions

The EU H2020 project M2DC aims at the definition of a modular microserver archi-
tecture for future data centers targeting a TCO reduction of 50% compared to other
servers for selected applications and an improvement in energy efficiency by 10-100
times, compared to 2013 typical servers. As discussed in this chapter, the new het-
erogeneous M2DC server combines resource-efficient microserver modules with a
multilayer communication infrastructure in a highly flexible manner, enabling seam-
less integration of state-of-the-art x86 processors, 64-bit ARM mobile/embedded
SoCs, 64-bit ARM server processors, FPGAs, and GPUs. New microservers are
developed within the project integrating, e.g., a 32-core ARMVS8 server processor
and an Intel Stratix 10 SoC, which combines ARMv8 cores with a tightly coupled
FPGA fabric.

Three independent communication infrastructures enable an unparalleled combi-
nation of flexibility and performance: The M2DC server provides dedicated networks
for monitoring and control, for management and compute, as well as for integrated
highly flexible high-speed, low-latency communication between the microservers.
Further increase in resource efficiency compared to other state-of-the-art solutions
is targeted with the integration of system efficiency enhancements into the server
architecture. At the hardware level, the SEEs are mainly realized using accelerators
based on FPGAs, GPUs, or MPSoCs. At the software level, the accelerators will
provide a wide variety of mechanisms for global system efficiency enhancements
ranging from application-independent system-level functions via enhancements that
support a complete class of applications to dedicated accelerators for a specific target
application.

The M2DC middleware provides a data center capable abstraction of the under-
lying heterogeneity of the server based on OpenStack Ironic, providing bare metal
(micro)server software deployment and lifecycle management. OpenStack Ironic
will be extended toward handling the dynamic and heterogeneous nature of the
microservers and hardware accelerators. Maintainability of the platform is ensured
by a hardware/software infrastructure that is based on established standards, and
advanced power and thermal management techniques, utilizing the rich sensoriza-
tion of the server platform.

Since the developed microservers are based on established computer on module
standards from the embedded domain, the realized platforms can be efficiently used
not only for hyperscale data centers but also for edge computing in IoT and industrial
IoT applications. Deploying the same hardware platforms at the edge and in the data
center is seen as a promising feature to increase IoT programmer productivity and
to decrease overall TCO.
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Chapter 7 ®)
Towards an Energy-Aware Framework Guca i
for Application Development and

Execution in Heterogeneous Parallel
Architectures

Karim Djemame, Richard Kavanagh, Vasilios Kelefouras, Adria Aguila,
Jorge Ejarque, Rosa M. Badia, David Garcia Pérez, Clara Pezuela,
Jean-Christophe Deprez, Lotfi Guedria, Renaud De Landtsheer

and Yiannis Georgiou

7.1 Introduction

The emergence of new applications (as well business models) in the Internet of
Things (IoT), Cyber-Physical Systems (CPS), embedded systems, cloud and edge
computing domains are transforming the way we live and work [1].

As the range of these applications continues to grow, there is an urgent need
to design more flexible software abstractions and improved system architectures to
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fully exploit the benefits of the heterogeneous architectures on which they operate,
e.g. CPU, GPU, heterogeneous CPU+GPU chips, FPGA and heterogeneous multi-
processor clusters all of which with various memory hierarchies, sizes and access
performance properties. In addition to showcasing such achievement, part of the pro-
cess requires opening up the technologies to an even broader base of users, making
it possible for less specialised programming environments to use effectively hid-
ing complexity through novel programming models. Therefore, software plays an
important role in this context.

On the other hand, computer systems have faced significant power consumption
challenges over the past 20 years. These challenges have shifted from the devices and
circuits level, to their current position as first-order constraints for system architects
and software developers. A common theme is the need for low-power computing
systems that are fully interconnected, self-aware, context-aware and self-optimising
within application boundaries [2]. Thus, power saving, performance and fast compu-
tational speed are key requirements in the development of applications such as IoT
and related computing solutions.

The project Transparent heterogeneous hardware Architecture deployment for
eNergy Gain in Operation (TANGO) aims to simplify the way developers approach
the development of next-generation applications based on heterogeneous hardware
architectures, configurations and software systems including heterogeneous clusters,
chips and programmable logic devices. The chapter will therefore present: (1) the
incorporation of a novel approach that combines energy awareness related to hetero-
geneous parallel architectures with the principles of requirements engineering and
design modelling for self-adaptive software-intensive systems. This way, the energy
efficiency of both heterogeneous infrastructures and software is considered in the
application development and operation lifecycle, and (2) an energy efficiency-aware
system architecture, its components, and their roles to support key requirements in
the environment where it runs such as performance, time-criticality, dependability,
data movement, security and cost-effectiveness.

The remainder of the chapter is structured as follows: Sect.7.2 describes the
proposed architecture to support energy awareness. Sections7.3—7.5 discuss key
architectural components and their role to enact optimal, in terms of requirements
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and Key Performance Indicators (KPIs), application construction, deployment and
operation, respectively. Section7.6 presents related work. In conclusion, Sect.7.7
provides a summary of the research and plans for future work.

7.2 System Architecture

The high-level architecture is introduced on a per component basis, as shown in
Fig.7.1. Its aim is to control and abstract underlying heterogeneous hardware archi-
tectures, configurations and software systems including heterogeneous clusters, chips
and programmable logic devices while providing tools to optimise various dimen-
sions of software design and operations (energy efficiency, performance, data move-
ment and location, cost, time-criticality, security and dependability on target archi-
tectures).

Next, the architecture is discussed in the context of the application life cycle:
construction, deployment and operation. It is separated into remote processing capa-
bilities in the upper layers, which in turn is separated into distinct blocks that support
the standard application deployment model (construct, deploy, run, monitor and
adapt) and local processing capabilities in the lowest layer. This illustrates support
for secure embedded management of IoT devices and associated I/O.

The first block, Integrated Development Environment (IDE), is a collection of
components to facilitate the modelling, design and construction of applications. The
components aid in evaluating power consumption of an application during its con-
struction. A number of plugins are provided for a front-end IDE as a means for
developers to interact with components within this layer. Lastly, this layer enables
architecture agnostic deployment of the constructed application, while also main-
taining low-power consumption awareness. The components in this block are as
follows: (1) Requirements and Design Tooling: aims at guiding the development and
configuration of applications to determine what can be targeted in terms of Quality
of Service (QoS), Quality of Protection (QoP), cost of operation and power con-
sumption behaviour when exploiting the potential of the underlying heterogeneous
hardware devices; (2) Programming model (PM): supports developers when coding
their applications. Although complex applications are often written in a sequential
fashion without clearly identified APIs, the PM let programmers annotate their pro-
grams in such a way that the programming model runtime can then execute them in
parallel on heterogeneous parallel architectures. At runtime, applications described
for execution with the programming model runtime are aware of the power consump-
tion of components implementation; and (3) Code Profiler: plays an essential role
in the reduction of energy consumed by an application. This is achieved through the
adaptation of the software development process and by providing software devel-
opers the ability to directly understand the energy footprint of the code they write.
The proposed novelty of this component is in its generic code-based static analysis
and energy profiling capabilities (Java, C, C++, etc. available in the discipline of
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mobile computing) that enables the energy assessment of code out-of-band of an
application’s normal operation within a developer’s IDE.

The second block consists of a set of components to handle the placement of
an application considering energy models on target heterogeneous parallel archi-
tectures. It aggregates the tools that are able to assess and predict performance and
energy consumption of an application. Application-level monitoring is also accom-
modated, in addition to support self-adaptation for the purpose of making decisions
using application-level objectives given the current state of the application. The com-
ponents in this block are as follows: (1) Application Life cycle Deployment Engine:
this component manages the life cycle of an application deployed by the IDE. Once a
deployment request is received, this component must choose the infrastructure that is
most suitable according to various criteria, e.g. energy constraints/goals that indicate
the minimum energy efficiency that is required/desired for the deployment and oper-
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ation of an application; (2) Monitor Infrastructure: this component is able to monitor
the heterogeneous parallel devices (CPU, memory, network, etc.) that are being con-
sumed by a given application by providing historical statistics for device metrics. The
monitoring of an application must be performed in terms of power/energy consumed
(e.g. Watts that an application requires during a given period of its execution) and
performance (e.g. CPU that an application is consuming during a given period of its
execution); (3) Self-adaptation Manager: This component provides key functionality
to manage the entire adaptation strategy applied to applications and Heterogeneous
Parallel Devices (HPDs). This entails the dynamic optimisation of energy efficiency,
time-criticality, data movement and cost-effectiveness through continuous feedback
to other components within the architecture and a set of architecture specific actuators
that enable environmental change. Examples of such actuators could be redeploy-
ment to another HPD, restructuring a workflow task graph or dynamic recompilation.
Furthermore, the component provides functionality to guide the deployment of an
application to a specific HPD through predictive energy modelling capabilities and
policies, defined within a decision support engine, which specify cost constraints via
Business-Level Objectives (BLOs).

The last block above the network fabric line addresses the heterogeneous parallel
devices and their management. The application admission, allocation and manage-
ment of HPDs are performed through the orchestration of a number of compo-
nents. Power consumption is monitored, estimated and optimised using translated
application-level metrics. These metrics are gathered via a monitoring infrastructure
and a number of software probes. At runtime HPDs will be continually monitored
to give continuous feedback to the self-adaptation manager. This will ensure the
architecture adapts to changes in the current environment and in the demand for
energy. Optimizations take into account several approaches, e.g. redeployment to
another HPD, dynamic power management policies considering heterogeneous exe-
cution platforms and application energy models. The components in this block are as
follows: (1) Device Supervisor: provides scheduling capabilities across devices dur-
ing application deployment and operation. This covers the scheduling of workloads
of both clusters (Macrolevel, including distributed network and data management)
and HPDs (Microlevel, including memory hierarchy management). The component
essentially realises abstract workload graphs, provided to it by the Application Life
cycle Deployment Engine component, by mapping tasks to appropriate HPDs; (2)
Device Emulator (DE): is responsible for delivering the initial mapping of the appli-
cation tasks onto the nodes/cores (at compile time), i.e. which application task should
run on each node/core. The mapping procedure is static and thus it does not take into
account any runtime constraints or runtime task mapping decisions. The TANGO
user can choose between (a) a good solution in low time and (b) a (near)-optimum
solution in a reasonable amount of time (depending on the application complexity
and on the number of the available nodes/cores). Emulation of the application tasks
on the HPDs is necessary in order to compute the corresponding performance and
energy consumption values. The novelty of the DE component is that it reduces the
number of different emulations required by order(s) of magnitude and therefore the
time needed to map the tasks on the HPDs.
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Furthermore, a secure gateway supports pervasive authentication and authoriza-
tion, which at the core of the proposed architecture enables both mobility and dynamic
security. This protects components and thus applications from unauthorised access,
which in turn improves the dependability of the architecture as a whole.

7.3 Application Development

7.3.1 Design-Time Tooling

Designing and developing software with an efficient execution on distributed envi-
ronment with fairly standard homogeneous processing devices is already a difficult
exercise. This complexity explodes when targeting a heterogeneous environment
composed not only of distributed multicore CPU nodes but also including accelera-
tors with many-core CPUs, GPUs and FPGAs. In the current era of heterogeneous
hardware, software development teams thus face the daunting task of designing soft-
ware capable to exploit underlying heterogeneous hardware devices available to the
most of their capability with the goal to achieve optimal runtime and energy perfor-
mance.

The algorithmic decomposition chosen to solve the problem at hand and the
selected granularity of computing task determine software execution efficiency on a
given underlying hardware hence affect time and energy performance. For instance,
many algorithms exist for matrix operations, data sorting or finding a shortest path in
a graph. Developers already take into account data properties such as matrix sizes or
degree of graph connectedness to select an algorithm with optimal time and energy
performance. Nowadays, they must also consider capabilities offered by hardware in
terms of parallel processing and data throughput. Such hardware capabilities influ-
ence design decision on algorithmic decomposition and task granularity choices to
achieve efficient performance. For instance, time and energy performance associated
with matrix multiplication on GPU or FPGA is directly influenced by matrix data
sizes as well as the level of parallelism possible on a each different kind of process-
ing nodes as well as their clock speed, their memory capacity, their data transfer
latencies, internally within the chip and externally through their I/O interfaces. In
other words, the most appropriate algorithmic decomposition and task granularity
are jointly influenced by data properties as well as the capabilities of the underlying
heterogeneous hardware available.

In addition to designing software for today’s operational conditions, developers
must strike the right balance between achieving an optimal performance now and
keeping a design implementation flexible and evolvable for tomorrow’s new hard-
ware. The most efficient algorithmic decomposition and task granularity for today’s
heterogeneous hardware and dataset properties might evolve. In the worst case, evo-
lution in hardware or data properties impacts software design and architecture forcing
developers to adapt drastically the application code, that is, another algorithm must



7 Towards an Energy-Aware Framework for Application Development ... 135

be implemented in order to better exploit the new hardware or the new kind of data.
In less radical situations, a given overall software architecture and algorithms can
remain unaltered. Only the task granularity must be adapted to process larger quan-
tity of data at once for instance. New technologies and programming models such
as OpenCL or OmpSs/COmpS [3, 4] can facilitate accommodating task granularity
changes without much effort, hence keeping software implementation fairly evolv-
able. However, it still remains the job of developers to identify the appropriate task
granularity for achieving improved time and energy performance and to provide this
granularity information to the underlying technology or programming modelling
tools. One of the goals of TANGO project is to provide design-time tooling to help
developers to make insightful design decisions to implement their software so as to
exploit the underlying hardware irrespective of the programming technologies and
programming models chosen.

The initial approach to guide design decision, proposed in the first year of TANGO,
relies on the rapid prototyping of the various simple software building blocks needed
in a given application. The first step for developers consists of developing a set of sim-
ple prototypes for selected building blocks, for instance, for the different algorithms
needed to solve multi-physics problems or to perform efficient image processing.
Each prototype implements a particular algorithmic decomposition and task granu-
larities for one of the identified simple software building blocks. For instance, a C
or CUDA implementation of matrix multiplication will, respectively, target CPUs or
NVIDIA GPUs nodes.

Developers can usually find alternative implementations of simple software build-
ing blocks that targets processors with fixed instruction set such as multicore, many-
core and GPU. These implementations rely on programming technologies such as
MPI, OpenMP, CUDA or OpenCL. On the other hand, the use of FPGA and other
reconfigurable hardware has so far remained more complex and only used by much
fewer experts. To address this issue, the TANGO development-time tooling proposes
atool, named Poroto, to ease porting segments of standard higher level code to FPGA.
While OpenCL has recently proposed synthetisation for FPGA as part of its com-
pilation toolchain, in many cases, developers only have implementation of simple
building blocks in C code (or other programming languages). In such cases, an ini-
tial prototype implementation may be easier with Poroto than having to re-write the
current C code in OpenCL. By annotating portions of C code with Poroto pragmas
enables the generation of associated FPGA kernels and their interfacing to the code
running on the CPU of the host machine through a PCI bus. The main processing
program remains in C and is augmented with the necessary code, encapsulated in
a C wrapper file that handles data transfer control to and from the offloaded FPGA
computations. The C portion to be offloaded on FPGA is actually transformed into
an equivalent VHDL program leveraging open-source C to VHDL compilers such as
ROCCC, PandA or other HDL code generation tools. Subsequently, the VHDL can be
passed to the lower level synthesis toolchains from the particular FPGA vendor like
Xilinx or Intel/Altera to generate bitstream for a specific FPGA target. Concerning
data transfer to/from the FPGA, Poroto currently relies on a proprietary technology.
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However, an ongoing TANGO effort consists of replacing this proprietary technology
with RIFFA (an open-source framework) to achieve similar data transfer operations.

Once the various prototypes of the different simple software building blocks have
been implemented, compiled and deployed on the different targeted heterogeneous
hardwares, it becomes possible to obtain benchmarks with different representative
datasets on each of the prototype variants. The benchmarking exercise is not restricted
to FPGA implementation, the initial code of simple software block can be executed
on multicore and many-core CPUs and if code also exists for GPU, it can also be
included in the benchmarking exercise.

After time and energy benchmarks for the different prototype implementations
of the various simple blocks have been collected from the execution on the different
heterogeneous hardwares targeted, developers must then identify an optimal way to
place a combination of prototype implementations on the various hardware devices
available in order to implement their complete solution. This optimisation problem
between time and energy is not simple to solve in particular when considering dif-
ferent prototype implementations of several simple blocks competing for various
heterogeneous hardware resources, and thus it becomes very useful to automate this
optimisation exercise.

In TANGO, the development-time tooling relies on an open-source optimisation
engine originated from operational research named OscaR to search optimal ways
to map the implementation of different software blocks on the different heteroge-
neous hardware nodes. Specifically, the Placer finds optimal mappings of software
component onto heterogeneous hardware, selects appropriate implementations of
these tasks and performs software tasks scheduling for optimising energy perfor-
mance while meeting specified timing constraints. Placer is implemented on top of
the constraint programming engine of OscaR.

From an initial performance application design, it is then possible to further opti-
mise application code by migrating from Poroto annotations to the COMPSs and
OmpSs programming model in order to achieve concurrent execution of an algorithm
on different heterogeneous processing nodes. This programming model is presented
in the next subsection.

7.3.2 Programming Model

To manage the implementation of parallel applications for heterogeneous distributed
computing environments, the TANGO programming model proposes the combi-
nation of two StarSs programming models and runtimes developed at Barcelona
Supercomputing Center (BSC). StarSs is a family of task-based programming mod-
els where developers define some parts of the application as tasks indicating the
direction of the data required by those tasks. Based on these annotations, the pro-
gramming model runtime analyses data dependencies between the defined tasks,
detecting the inherent parallelism and scheduling the tasks on the available comput-
ing resources, managing the required data transfers and performing the task execu-
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tion. The StarSs family is currently composed of two frameworks: COMP superscalar
(COMPSs) [3], which provides the programming model and runtime implementa-
tion for distributed platforms such as clusters, grids and clouds, and Omp Superscalar
(OmpSs) [4], which provides the programming model and runtime implementation
for shared memory environments such as multicore architectures and accelerators
(such as GPUs and FPGAs).

In the case of TANGO, we propose to combine these programming models in
a hierarchical way, where an application is mainly implemented by a workflow of
coarse-grain tasks annotated with the COMPSs programming models. Each of these
coarse-grain tasks can be implemented as a workflow of fine-grain tasks developed
with OmpSs. At runtime, coarse-grain tasks will be managed by COMPSs runtime
optimising the execution in a platform level by distributing tasks in the different
compute nodes according to the task requirements and the cluster heterogeneity. On
the other hand, fine-grain tasks will be managed by OmpSs which will optimise
the execution of tasks in a node level by scheduling them in the different devices
available on the assigned node.

This combination presents different advantages with respect to other approaches:
First, it allows developers to implement parallel application in a distributed heteroge-
neous resources without changing the programming model paradigm. The program-
mer does not require programming model and APIs. It just requires to decide which
parts are tasks, the direction of its data and its granularity. Second, developers do
not have to deal with programming data movements like in MPI. The programming
model will analyse data dependencies and keep track of the data locations during the
execution. So, it will try to schedule tasks as close as data or transparently doing the
required data transfer to exploit the maximum parallelism. Third, we have extended
the versioning and constraints capabilities of these programming models. With these
extensions, developers will be able to define different versions of tasks for differ-
ent computing devices (CPU, GPUs and FPGA) or combinations of them. So, the
same application will be able to adapt to the different capabilities of the heteroge-
neous platform without having to modify the application. During the execution, the
programming model runtime will be in charge of optimising the execution of the
available resources in a coordinated way. In platform scheduling, the runtime will
schedule the task in the different compute node resources, deciding which task can
run in parallel in each node and manage that the different tasks are not colliding in
the use of resources by the affinity of task to devices. At the node level, the runtime is
in charge of scheduling the fine-grain tasks in the resources assigned in the platform
level scheduling.

7.3.2.1 Application Implementation Example

An example of how an application is implemented with TANGO programming model
is shown next. This example implements a matrix multiplication by blocks in two
levels. The first level splits the matrices into blocks and computes the matrix multi-
plication by block. Each block multiplication is defined as coarse-grain task. Each
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int main(int argc, char sxargv) {
int N = atoi(argv[l]);
int M = atoi(argv([2]);

compss_on ();

cout << ”Loading._Matrices ...\n”;
Matrix A = Matrix :: init(N,Ml);
Matrix B = Matrix ::init (N,M);
Matrix C = Matrix::init(N,M);

cout << ”Executing.Multiplication ...\ n”;
for (int i=0; i<N; i++) {
for (int j=0; j<N; j++) {
for (int k=0; k<N; k++) {
C.data[i][jl->multiplyBlocks (xA.data[i][k], *B.data[k][j]);

}
}

compss_off ();

Fig. 7.2 Main workflow of the matrix multiplication

interface Matmul

{

@ Constraints (processors={ @Processor (ProcessorType=CPU,
ComputingUnits=4)1});
void Block:: multiplyBlocks (in Block blockl, in Block block2);

@Constraints (processors={ @Processor (ProcessorType=GPU,
ComputingUnits=1)});

@Implements (Block :: multiplyBlocks );

void Block:: multiplyBlocks_GPU (in Block blockl, in Block block2);

}:

Fig. 7.3 Coarse-grain tasks definitions

matrix block can be decomposed in smaller blocks, and each block multiplication
can be decomposed as a workflow of small block multiplications.

Figure 7.2 shows the main code of the benchmark application where a loop of the
multiply Blocks coarse-grain tasks is implemented.

Figure 7.3 shows the interface file where the developer can define the methods
which are defined as tasks. In this case, we have defined a task which has two
implementations: one which runs in 4 CPU cores and another which runs in a GPU.

Finally, Fig.7.4 depicts the implementation of the big block multiplication. In
the first case, the fine-grain tasks are the computation of the different elements of
the resultant matrix block. In the second case, the big matrix block is decomposed
in smaller block in order to fit in the GPU device memory and fine-grain tasks are
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void Block:: multiplyBlocks (Block blockl, Block block2) {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
#pragma omp task in(blockl.data[i][0:M], \
block2.data[0:M][j]) out(data[i][j])
for (int k=0; k<M; k++) {
data[i][j] += blockl.data[i][k]*block2.data[k][]];
}

}
¥

#pragma omp taskwait

void Block:: multiplyBlocks_GPU (Block blockl, Block block2) {
int NB = M/BSIZE;
for (int i=0; i<NB; i++) {
for (int j=0; j<NB; j++) {
for (int k=0; k<NB; k++) {
Muld(blockl .data[i*NB+k], block2.data[k«NB+j],
data[i*NB+j], NB);
}

}
¥

#pragma omp taskwait

}

#pragma omp target device(cuda) ndrange (2, 64, 64, 32, 32)

#pragma omp task in(A[O:NBxNB], B[0:NB«NB]) inout(C[0:NB*NB])

__global__ void Muld(doublex A, doublex B, int wA, int wB,
doublex C, int NB);

Fig. 7.4 Fine-grain tasks definitions

defined as the multiplication of these small blocks. The fine-grain task in this case
is the CUDA kernel defined by the Muld function.

7.4 Application Deployment

The application deployment is taking care by the Application Lifecycle Deploy-
ment Engine (ALDE) that takes cares of the following tasks: provide the application
development tools information about the possible targeted architectures; build the
application for different configurations of heterogeneous hardware architectures and
libraries; prepare the application packets for deployment also, if possible, deploy
the application to the targeted testbed; and finally, if the connection with the device
supervisor is possible, it will report and monitor the execution of the application to
the user. These steps are explained in more detail next.
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An installation of ALDE can register several testbeds that can have a TANGO
device supervisor or not. If the testbed does not have a device supervisor, the user or
administration needs to input the hardware heterogeneous characteristics of it: RAM,
CPUs, GPUs, number of nodes, etc. If the testbed has a TANGO device supervisor,
ALDE will automatically connect to the testbed and recollect the node hardware
information. This information will be exposed to the application development tools
so they can notify the application developer the testbed heterogeneous capabilities
also, some of the development tools could use this information to determine which
is the best testbed to run a given application.

The building process of the application will be done by ALDE compiling the
application for different combinations of targeted heterogeneous architectures and
libraries. The usage of tools is like EasyBuild [5] or Spack [6]. The different com-
pilations could then be manually selected by the user of self-adaptation manager to
deploy the optimal code for the given available resources by the device supervisor.

After the application is compiled, it needs to be packetized. The final packet
format will depend on the targeted architecture. ALDE supports just submitting the
application to the device supervisor by simple binaries (typical HPC scenario). It also
supports the creation of containers based on Docker [7] or Singularity [8]; this is both
targeted to HPC and embedded environments that allow containers as an application
distribution system. Finally, it also supports the generation of ISO images to be
installed into heterogeneous embedded devices.

If the targeted heterogeneous architecture has an online device supervisor, ALDE
has the possibility to connect to it and monitor the execution of the application.
During the third year of the project, in this case, it is also expected that ALDE would
supervise the data transfer to the selected architecture for the execution of application.

7.5 Application Execution

7.5.1 Device Supervisor

The Device Supervisor (DS) is responsible for efficiently delivering the computing
power of heterogeneous devices to the applications based on their needs. It provides
the means to enable the execution of applications upon the platforms’ resources. In
particular, it offers a number of parameters that enable the fine specification and usage
of different types of resources (CPUs, GPUs, Memory, etc.) and their constraints for
the optimal execution of the applications. Furthermore, it enables task placement and
isolation upon devices during application deployment and operation.

Besides the various features and parameters for single application execution, this
component allows the usage of compute platform by multiple users where jobs may
even compete for the same resources. Hence, its main intelligence relies on resource
selection techniques to find the most adapted resources to schedule the users’ jobs
while keeping a high system utilisation and low fragmentation.
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Within the TANGO framework, the DS can get inputs from the Application Lifecy-
cle Deployment Engine to execute jobs under particular parameters and it can follow
the execution of the application and return intermediate state or final results to the
ALDE. Optimization criteria (such as power consumption) and environment state
are provided as input by the self-adaptation manager and monitoring infrastructure
components, respectively.

The device supervisor in TANGO is represented by Slurm [9] which is an open-
source resource and job management system. Slurm performs workload management
on five of the ten most powerful computers in the world of the Top 500 list!, including
the system ranked number two, Tianhe-2, which features 3,120,000 computing cores.

Slurm is specifically designed for the scalability requirements of state-of-the-art
supercomputers. It is based upon a centralised server daemon, slurmctld also
known as the controller, which communicates with client daemons s 1urmd running
on each computing node. Users can request the controller for resources to execute
interactive or batch applications, referred to as jobs. The controller dispatches the
jobs on the available resources, whether full nodes or partial nodes, according to
a configurable set of rules. The Slurm controller also features a modular architec-
ture composed of plugins responsible for different actions and tasks, such as job
prioritisation, resources selection, task placement or accounting.

Most resource and job management systems today do not handle heterogeneous
resources efficiently. They provide a complete SPMD (Single Program Multiple
Data) support but limited MPMD (Multiple Program Multiple Data) support. Limited
MPMD support means that even if users can specify different binaries to be used
within a parallel job, all the tasks are currently associated with the same resources
requirements. To be able to leverage all the benefits of platforms with heterogeneous
resources, we need to be able to specify different heterogeneous resources within
the same job and be able to support the MPMD model. This support will enable
users willing to harness different types of hardware resources inside the same MPI
application, having part of their code run on GPUs, while other parts are executed on
standard CPUs with specific low amount of memory and the last part on CPUs with
large amount of memory. Currently, we are obliged to request the most complete set
of resources for each task wasting some of the hardware with tasks that will not need
all of them. In some cases, the total configuration required to run such a job does not
even exist as all the nodes of the cluster may not provide all the hardware features.

Hence, the device supervisor component of Tango will be represented by an
enhanced version of Slurm resource and job management system specifically
designed to support heterogeneous resources.

Thttps://www.top500.org/list/2017/11/.


https://www.top500.org/list/2017/11/

142 K. Djemame et al.

7.5.2 Energy Modeller

Energy modelling can be used at multiple phases of an application life cycle. At
deployment time, it helps with the assignment of resources to an application and at
runtime it aids a continuing energy mitigation strategy.

The Energy Modeller (EM) provides power and energy consumption information
for compute devices in the current, future and historical contexts, thus providing
key information that guides the selection of the most appropriate configuration of an
application within a heterogeneous environment, with the aim of minimising energy
consumption, acting as a key advisory component in the energy reduction process. It
provides the mathematical models that estimate the power consumption and energy
usage of a given deployment decision. Thus, it is able to advise and drive the selection
of hardware for service deployment and advise the process of self-adaptation.

The energy modeller’s facility to assess historic energy consumption forms the
heart of any advisory service for end users who wish to understand the energy con-
sumption of their application. The advice to end users goes further by informing
them of the current power consumption of their software and hardware setup, and
thus they can gauge the current impact of running their applications.

The energy modeller requires the use of models to determine from a host’s
resources usage the likely future energy consumption, as well as providing a means
of attributing power consumption to a particular application.

An estimation of the power consumption of an application or physical resource
derives from two aspects. The first is the correct profiling of the resources char-
acteristics, encompassing aspects such as its idle energy consumption and energy
consumption under various load conditions. The second aspect is the profiling of the
workload to be performed. This workload derives from the application that is to be
characterised based upon the hardware it runs upon. These two profiles combined
therefore advance the understanding of how much energy a application is expected
to consume in the future.

The aspect of correctly charactering resource takes care during the calibration
process. The calibration process must provide repeatable conditions that generate a
sequence of precise loads on the physical host undergoing measurement. The aim is
to tightly control the environment while running an experiment to gain an accurate
mapping between the resource utilisation and power consumption. This data can then
be used as the basis of predicting future power consumption/energy usage, attributing
power to a given workload as well as providing faster and more responsive measures
of current power consumption especially for short runs of an application. The process
of applying fixed calibration loads is illustrated in Fig.7.5.

A sequence of runs (marked as (a)) is shown with increasing utilisation, with small
gaps between each run. The duration (a) can be chosen based upon any averaging
window of the reported sensor data. A longer time period (a) gives a greater chance
of the reported utilisation and power level stabilising. Issues such as averaging,
unsynchronised metrics, network delay or caching mechanisms can all have their
effects on calibration accuracy. A key solution to this is to discard values at the start
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Fig. 7.5 The construction of artificial traces for calibration

and end of an experimental run (indicated by (c) in Fig.7.5). In addition to this, it
eliminates experimental error such as load spike above the intended target load when
each run starts. The final set of datapoints in the area indicated by (b) represents the
best calibration data. One advantage of a model is that once it is calibrated, even if
the power measurement sensor reports an average value, an instantaneous estimated
power consumption value can be obtained without averaging and at a higher temporal
granularity through the model.

The second aspect of attributing power to a given application needs reasonable
way to allocate power consumption. One such way is to consider the system’s idle
energy usage as well as any active power consumption, given a specific application’s
load. The idle energy/power consumption should be evenly distributed among the
applications that are running upon the host machine. The remaining energy is then
allocated based upon the induced load. This is described in Eq.(7.1) where EU_P,
is the application’s power consumption and Host_P is the measured host power
consumption. EU_U'til, is the application’s CPU utilisation and EU _Count is the
count of applications on the host machine. EU_Util, is the CPU utilisation of
a member of the set of applications on the named host. Host_Idle is the host’s
measured idle power consumption.

EU_Util, 7.1)
ZEU_Count EU_Utl.ly :

y=1

EU_P, = Host_Idle 4+ (Hostp — Host_Idle) x

7.5.3 Self-adaptation Manager

The Self-Adaptation Manager (SAM) is the principle component in the middleware
for coordinating self-adaptation. It plays an essential role in maintaining power,
energy and performance and goals of an application at runtime. Its primary focus is
upon providing the infrastructure runtime self-adaptation capabilities with a partic-
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ular focus on trade-off management for the applications. This is achieved through
the careful consideration of violations in service quality and the actuators that can be
utilised to perform self-adaptation. This adaptation covers both macro- and micro-
aspects of an application’s deployment upon heterogeneous parallel architectures.
The levels differ in that deployed applications may be submitted to a given node,
but the node also has heterogeneity in that various accelerators might be utilised and
configured for usage by the varying applications that are running.

The self-adaptation manager follows a MAPE [10] control loop pattern of monitor
analyse, plan and execute. Adaptation in this cycle considers these main aspects:

e the varying level of QoS required, mainly either real-time high quality of service
or best effort services;

e the various implementations of an application, which will have means to use var-
ious accelerators;

e the performance of each implementation on the accelerators (affinity towards an
adaptor);

e the availability/demand for accelerators and resources;

e the malleability of an application;

e the required pace of response (how quickly change occurs and real-time require-
ments); and

e the acceptable frequency of adaptation (avoiding over adaptation).

These collectively will give an application an affinity towards various accelerators
and application configurations. QoS in TANGO is formed of two distinct categories
of application. The first is real-time applications that require a high level of quality of
service, i.e. that they have priority to resources while best effort services are expected
to comprise the rest of the tasks.

Applications are expected to have various different implementations, each of
which will be able to be executed on only some of the accelerators. The availability
of these variations will be important as it offers the possibility for the SAM to select
and switch between actuators dependent upon their availability. The quality of each
implementation varies and will depend upon if the implementation can be structured
in a way that takes advantage of the accelerator. This will give varying degrees of
speed up, which will give a notion of affinity of an application to a given adaptor. The
adaptors are a limited valuable resource that is not in all cases shareable. Fine-grain
pre-emption in NVIDIA GPUs has only become available in the Pascal architecture,
which was released in mid-2016 [11]. Given the limited access to resources some
applications may throughout their lifecycle be able to scale or shrink their resource
usage.

A portion of jobs will be rigid and unable to change their resource requirements,
while some others will be mouldable to the resources that are available at deployment.
A further set will be malleable and will be able to dynamically change their resource
requirements. This is particularly useful in regards to the availability of accelerators.
Added to the limits of access to accelerators, some adaptations will be required to
be completed with very limited delay, such as video processing. This places limits
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on the types of actuation that is permitted. This gives rise to a bias towards smaller
control loops that handle specific QoS requirements. In cases of adaptation, there is
an acceptable frequency by which actuation is allowed to occur, such as once per
minute. This is an important factor as it ensures applications are not interfered with
and are allowed to perform useful work.

7.6 Related Work

Computing nodes are incorporating different types of devices in order to be more
efficient when computing different types of applications by accelerating the com-
putation at lower power. However, this heterogeneity brings more complexity in the
application development, each of these devices has their own programming language
or API to spawn the computation in the different devices. For instance, FPGA are
traditionally programmed with the VHDL language; and for deploying and running
the computation, developers have to use the toolchain provided by the FPGA ven-
dor. A similar problem happens with the general-purpose GPUs. NVIDIA offers the
CUDA framework [12] for programming and running applications in its devices and
other vendors offer similar frameworks to do the same.

Current research is focusing their efforts on reducing the complexity of program-
ming these heterogeneous nodes, as well as providing portability between archi-
tectures allowing the reuse of the code for similar devices. One of these examples
is OpenCL [13]. It was born with the ambition of providing a common program-
ming interface for heterogeneous devices (including not only GPUs but also DSPs
and FPGAs). With a syntax based on C, it has had a significant impact because
the same code could be used in several accelerators. However, similar to CUDA,
it requires the programmer to write specific code for the device handling, which
reduces programmability. OpenACC [14] is another example of programming stan-
dard for parallel computing designed to simplify parallel programming of heteroge-
neous CPU/GPU systems. Based on directives, the programmer can annotate the code
to indicate those parts that should be run in the heterogeneous device. The OpenMP
standard [15] tackles the programmability issues in a similar way as OpenACC with
regard to the heterogeneous devices and also considers many other aspects of paral-
lelism which makes it a stronger option.

However, these solutions are just managing the heterogeneity inside a node. If
the application requires to run in several nodes (e.g. big amount of data or large
parallelism), solutions mentioned before must be combined with other frameworks
which manage the spawning of processes and data movements between the different
computing nodes. Developers can attempt to do it by hand using the TCP/IP and
threading libraries, which require a lot of programming effort and skills or use one
of the parallel distributed computing frameworks. One of these frameworks is MPI
[16], which provides an API for interchanging data messages between the different
processes for SPMD applications. Other options are PGAS programming models
such as UPC [17], which allow to create a global address space and use shared
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memory programs in different nodes. Both options are working quite well-running
Single Process Multiple Data (SPMD) application in homogeneous clusters intercon-
nected with a very fast network and SPMD application. However, in heterogeneous
environments distributed across different locations, they are to reaching good per-
formance. For these reasons, we have proposed to combine COMPSs and OmpSs
which have good results in managing heterogeneity at platform and node level, and
its programmability relies on the same task-based paradigm.

Prior to runtime considerations, developers must provide application code tai-
lored for executing on heterogeneous hardware. Whether relying on MPI, OpenACC,
OpenMP, OpenCL, CUDA, or plain old C in application code, developers must craft
their implementation, i.e. decompose their algorithms and identify granularity of
subtask of these algorithms in order to exploit the available heterogeneous hardware
devices optimally. While full development toolchains exist in open source for fast
prototyping on standard multi- and many-core CPU [18] and on GPU [19, 20], no
integrated toolchain is available in open source for fast prototyping offloading on
FPGA. Poroto provides such an integration over existing open-source frameworks
such as ROCCC for the high-level synthesis from C to VHDL. Future plans include
support of PandA framework and also better integration with RIFFA for generic and
portable handling of data transfers between the main CPU and the FPGA board.
Regarding the optimal mapping of software component and scheduling of tasks
using this software component, PREESM [18] and Silexica [21] both have studied
the problem. However, they are not publishing their ad hoc algorithms. Placer is
implemented on the top of the operational research optimisation framework OscaR,
whose foundations have been validated in several industry grade projects and prod-
ucts. Thus, Placer only needs to implement additional problem-specific code. This
allows for high flexibility to support various requirements such as power cap and
DVFS, among others as well as better readability for verifying the correctness of the
optimisation search algorithm.

Resource management and job scheduling in traditional HPC systems are being
performed by specialised software called RIMS. This software holds an important
position in the HPC stack since it stands between the user workloads (jobs) and
the hardware platform (resources). It is responsible for delivering computing power
to applications efficiently. More than 2 decades of research and developments in
the field has resulted in various open-source and proprietary versions of RIMS that
exist today [22-26] offering basic and advanced functionalities to deal with HPC
specialised platforms and workloads.

Since 2010, some newer generation schedulers such as Mesos [27] and Yarn
[28] can execute both compute and data-intensive workloads based on new types of
internal architectures trying to deal with scalability, efficiency and fault-tolerance
issues. In this group, we can also add Flux [29] which is currently under active
development and destined for extreme-scale HPC systems.
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7.7 Conclusions

This chapter has highlighted the importance of providing novel methods and tools
to support software developers aiming to optimise energy efficiency resulting from
designing, developing, deploying and running software on HPAs while maintaining
other quality aspects of software to adequate and agreed levels.

The specification of a proposed architecture has been presented, which includes
the architectural roles and scope of the components. This architecture complies with
standard HPAs and supports an IDE, an application deployment on HPA environ-
ments and heterogeneous parallel device environments. The design of the various
architectural components was described, with emphasis on the requirements in order
to support energy efficiency management, which is addressed during the complete
life cycle of an application.

Future work includes the implementation of capabilities to perform continuous
autonomic self-adaptation during runtime. This leverages fine-grained monitored
metrics of heterogeneous parallel devices and application software to create an adap-
tation plan supporting the performance and cost goals of an application. It is achieved
through advances in modelling and prototyping that enable power, cost and perfor-
mance awareness during operation through emulation and simulation under various
‘what-if” scenarios.
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Chapter 8 ®)
Enabling Virtualized Programmable i
Logic Resources at the Edge

and the Cloud

Kimon Karras, Orthodoxos Kipouridis, Nick Zotos,
Evangelos Markakis and George Bogdos

8.1 Enhancing Compute Through Programmable Logic

Continuous, unabated performance increases are an innate part of the computer world
from the invention of the first microprocessor until today. This trend appears to be,
however, slowly but steadily coming to an end. Single thread performance gains have
been slow to extract from each new technology node for more than 10 years. This
was countered successfully by a massive push into parallel computing in the form of
multi-core, multi-threaded processors which continues until the present, albeit while
showing clear signs of running out of steam. The reason is that parallelism isn’t a
silver bullet that can be applied to every problem in infinite amount. Many common
applications can’t be parallelized further, and thus, any gains that can be extracted
by increasing the number of cores and/or threads are limited to only small subset of
all applications.

This has led academia and industry alike in search of a solution that will allow for
the processing of the massive heaps of data that are being collected throughout the
world by sensors, cameras, the Internet, etc. The most promising fruit of that research
has by far been heterogeneous compute, a concept that encompasses anything from
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CPUs with different core types on the same processor die to modern SoCs that
include CPUs, GPUs and custom accelerators or custom processors like Google’s
Tensor Processing Unit [8] or Micron’s Automata Processor [13].

These solutions are trying to address the processing of massive data, principally
in the cloud but also increasingly at the edge, where a big part of that data is being
generated. Both of these fields are ripe for exploration where a multitude of concepts
are vying for domination. Regardless of the details of each architecture, the basic
premise and ingredients are always the same, as are the issues plaguing the current
cloud-centric paradigm which they’re trying to solve, namely:

e Heaps of data being directed to the cloud for processing and/or storage, leading to
congestion at the network leading to and from the data centers.

e Unacceptably high decision-making latency leading to delays in taking action
based on collected data.

The former is a direct result of the centralized architecture, which treats edge
nodes as simple data collection points and/or actuators and ships all the data to one
or more massive data centers for analysis. As the number of edge devices explodes
and the data they collect diversifies, the traffic being fed into data centers will be
strained to the extreme, which means that either the network will become congested
or unacceptably high investment into infrastructure will be required to avoid this.
Congestion on the path to and from the data center will unavoidably lead to the
second issue, latency. Decision-making latency means the time it takes to reach a
decision regarding an action to be taken and implement that action wherever required,
usually at the networks edge. Currently in order for this to happen, data needs to be
sent up to the cloud, sifted through and the decision needs to propagated downward
to the edge again over multiple, potentially unreliable hops. Thus, it is clear that there
are tangible benefits to accelerating tasks into the cloud but also to shifting parts of the
processing load toward the networks edge. This translates into increased processing
requirements for small, low power mist and fog nodes, which are currently not up to
the task and which can’t simply use the powerful CPUs found in contemporary data
centers due to power constraints. This makes the case for compute acceleration that
delivers significant performance gains at low power consumption at the edge even
more prescient than in the cloud.

One alternative that can offer impressive performance increase while maintaining
very low power consumption, a feature critical in power-strapped edge nodes, are
FPGAs. There’s a long literature of examples where FPGAs provide impressive
performance benefits in comparison to standard CPUs, which Sirowy and Fiorin
sum up excellently [11]. At the same time, FPGAs can be reprogrammed quickly
and infinitely so the tasks assigned to them can vary over time making them easily
adaptable to changing demands and capable of receiving updated dynamically in the
field. That being said, programmable logic has been marred by several caveats that
hinder its adoption:

e While FPGAs are reprogrammable, the process does not allow for automated,
remote deployment of tasks from a distance. Typically, programming has to be
performed with a cable attached to the device.
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e FPGA developmentrequires very esoteric knowledge of the target device including
low-level details like pin assignments and interface standards.
This chapter proposed the Programmable Compute Platform (PCP) which
addresses and alleviates both of these concerns by offering:

e A system consisting of both HW and SW that allows for the integration of an
FPGA into the edge and/or cloud and the remote (re)deployment of tasks to it over
a standard SW stack.

e A working hardware system with strictly defined, intuitive interfaces where tasks
can work in a plug-and-play manner thus reducing the overhead to develop tasks
for remote deployment.

In the current iteration of the platform, this is accomplished by utilizing a novel
device called an FPGA SoC. We use this device to achieve an optimal division of
labor between the A9 CPUs and the FPGA, with the CPUs executing the SW that
enables the remote deployment of an HW task (similar to an HW virtual machine)
on the programmable logic. This includes an agent that can reply to queries about the
devices state and can receive a HW VM image and deploy it to the HW and/or create
virtual network interfaces to integrate the device seamlessly into service function
chains.

Our system is at the stage of a functioning proof of concept with all of the manda-
tory HW and SW components up and running on the Xilinx ZC706 development
board. An h264 decoder is used as a test HW VM to highlight the benefits of using
an FPGA as an accelerator and the performance and power advantages it brings.

The remainder of this chapter is organized as follows: Section 8.2 provides an
overview of existing efforts in this area. Section 8.3 introduces the programmable
cloud platform and its components, while Sect. 8.3.3 explains the changes made to
the OpenStack controller to make it FPGA-aware. Section 8.4 provides preliminary
results both for the platform and the HW VM being tested, and finally, Sect. 8.5
summarizes our findings and provides pointers for future work.

8.2 Prior Efforts in Virtualizing Programmable Logic

Research in integrating FPGAs in the existing cloud infrastructure is scarce though
the topic has been gaining traction as of late. Edge acceleration has on the other hand
been flying completely under the radar so far, even at a conceptual level. On the cloud
front, the handful of research papers can be found on the subject is summarized here,
with all of them converging on a single approach:

e Extending OpenStack Nova to allow for the deployment of FPGA-based systems.

e Provision of a static area in the FPGA to allow for the deployment of the NFs.

e A dynamically reconfigurable area in the FPGA in which the user will be able to
deploy his NFs.

More specifically, Buma et al. [3] introduce a framework for deploying the so-
called Virtualized FPGA Resources (VFRs) to an FPGA which focuses on the HW
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side of the problem. They take advantage of the OpenStack service called glance
to deploy VM packages which contain FPGA bitstreams to the device. These are
then picked up by an agent (running in SW on the compute node), which unpacks
the VM and deploys the bitstream to the device. The advantage of this approach is
that the FPGA is completely abstracted from OpenStack. Deployment of a VM from
its perspective remains does not change in the slightest since the whole process is
handled in the agent on the compute node. The agent manages the FPGA, which
is divided into a static and a dynamic part. The static part contains all the modules
necessary for the deployment of the VFRs and for the communication between the
external world and the VFRs (including a network and a DRAM interface). It also
performs the necessary handshaking between the VFR and the agent to start and stop
it when deploying or retracting it. The dynamic area is where the VFRs are actually
programmed. A NetFPGA-10G board is used for a simple prototype, which uses a
load balancer application to demonstrate primarily the feasibility of the concept, but
also the performance gains that can be reaped by migrating from an SW VM to an
FPGA-based one.

Another similar if somewhat more comprehensive effort was published by
Chen et al. [4]. This work includes many common elements with the system to
be developed within this project. More specifically, it uses adapted OpenStack to
deploy HW VM images to the FPGA in which it implements a layered architecture
that enables the programmable logic in the FPGA to run these HW VMs in isolation.
On the HW level, the programmable logic can be both space- and time-shared by
introducing the notion of a segregated accelerator region in which the HW VMs are
slotted in. Additionally, a static area is reserved on the programmable logic, which
regulates access to DMA resources among the accelerators and manages jobs in
them. On top of this HW infrastructure, there are three SW layers that facilitate the
deployment and control of the HW VMs from host SW whether that is the cloud
controller or SW running locally on the processor. The main limitation of this work
is the limited connectivity offered to the accelerators (only a DMA connection to
DRAM) and the fact that there is no provision for HW/SW VMs. Furthermore, the
paper does not go into detail about how OpenStack had to be extended to support
FPGA-based VMs.

A third approach for deploying VNFs to FPGA-based systems was published by
Ge et al. [7]. This work shares a lot of commonalities with the [2] in that the pro-
grammable logic is divided into slots for accelerators to which tasks are dispatched.
The accelerators are slotted in using partial reconfiguration which is handled by a
VM running on standard x86 processor. Additionally, each accelerator is deployed
over its own SW VM via OpenStack. This means that having an SW component is
mandatory even if its just a shell for deploying an accelerator. In the system described
it appears that both OpenStack and VMs are not tightly integrated into this system,
meaning that the heterogeneity of the system is hidden from these components.

Another indispensable element of any virtualized system is the Hypervisor. Of
particular interest for this work are potential Hypervisors that can be executed on the
ARM A9 processors found on an FPGA SoC. One possible alternative was presented
by Pham et al. [10]. The system introduces in this paper encompasses a wider system
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than just the Hypervisor. That system is based on the time-multiplexing of tasks on
the programmable logic to accelerate SW executed on the Hypervisor. To accomplish
this it creates an overlay onto the programmable fabric to allow for coarse-grained
core design and deployment. The most interesting part of this work is the Hypervisor
which runs on the ARM A9 cores and is based on the Codezero Hypervisor from Bell
Labs. This could be reused in our effort, granted that the source code is available;
however, modifications will most certainly have to be made to:

e Allow it to run on the ARM A9s found on the Zyng.
e Allow it to virtualize the FPGA resource.
e Communicate in a compatible manner with OpenStack Nova.

The effort required by each of these changes remains to be evaluated.

It’s clear from the short overview provided in this section that while all existing
solutions appear to agree on the basic features required for FPGA cloud integration,
all of the platforms end up leaving something to be desired. PCP rectifies this by
ticking all the boxes and offering a straightforward, intuitive FPGA-based device for
the cloud end the edge.

8.3 A Virtualizable, Remotely Manageable FPGA SoC
Platform

This section provides a detailed overview of the FPGA SoC-based programmable
cloud platform. It consists of a hardware and a software component that together
allows for the remote deployment of hardware tasks on the FPGA by using standard
cloud management software, namely OpenStack. The hardware component is further
elaborated upon in Sect. 8.3.1. The software running on the FPGA SoC’s ARM CPUs
allows the integration of the platform into OpenStack and is explained in Sect. 8.3.2.
Finally, the changes that were performed in the OpenStack controller in order to
allow it to utilize programmable logic-based devices are highlighted in Sect. 8.3.3.
PCP makes some concessions in order to simplify the design and strike an optimal
balance between design complexity (and thus the overhead of managing the VMs’
deployment) and the flexibility offered to the user. The first of the two decisions that
were made were to only allow one HW VM to be deployed on the programmable
fabric at any given time. This was done to avoid the complexities of parallel deploy-
ment of HW tasks on the FPGA. These have been discussed in detail in the past [1, 2,
9] and always led to unmanageable overhead and complicate the design of the hard-
ware tasks for the system excessively thus negating part of the advantages of such a
platform. The second decision was to allow for only pure HW VMs to be deployed.
Since an FPGA SoC consists of a pair of ARM A9 CPUs and programmable logic,
it is in principle possible to have VMs that are made up of a software part running on
the ARM and a hardware part running on the programmable logic. The reason this
was rejected for the PCP this is that the ARM A9 CPU currently available in FPGA
SoC devices is not directly virtualizable itself, which increases the complexity of the
task and reduces its appeal since the processors in the PCP already had their work cut
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out for them. Future FPGA SoCs like Xilinx’s MPSoC [15] will include four ARM
AS53 CPUs which pack more punch and are directly virtualizable, which will make
HW/SW VMs a more interesting endeavor.

8.3.1 Hardware

PCP allows for the deployment of tasks onto the programmable logic, which can
be swapped in and out by the OpenStack controller as required. To accomplish this,
we utilize a feature present in modern FPGA called dynamic partial reconfiguration
(DPR). DPR allows part of the programmable fabric to be reprogrammed on the
fly, while the remainder of the device continues to operate as intended. The PCP
uses DPR to update the HW VM that is executed on the programmable logic on the
fly. As such, the programmable logic in the programmable cloud platform is further
subdivided into two parts, the static and the dynamic one, a typical arrangement in
systems that utilize dynamic partial reconfiguration to change the functionality of a
section of the device. This division is reflected in Fig. 8.1.

The static area is ancillary and enables the reconfiguration of the dynamic one,
as well as the interconnection of the processor system (PS) with the dynamic area.
It contains an AXI interconnect and AXI DMA module which connect the PS to the
programmable logic (PL) as well as the PCAP that performs the reconfiguration of
the dynamic area. The AXI DMA module contains two channels: one for data traffic
to and from the HW VM and one used for sending monitoring data from the VM to the
monitoring SW on the CPU. It doesn’t implement Scatter—Gather DMA functionality
as this would lead to higher resource usage due to the additional complexity and the
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Fig. 8.1 Overview of the programmable cloud platform hardware/software architecture
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expected benefit for our system is infinitesimal. The AXI communication fabric runs
at 150MHz and has a width of 64 bits thus providing enough bandwidth to and from
the dynamic area. An important goal for the static area is that it remains as small as
possible to allow for the bulk of the programmable resources to remain available for
the HW VMs. In the PCP the static area occupies approx. 6000 LUTs and 3500 FFs,
which is less than 4.5% of the available resources on the used FPGA SoC device
The dynamic area is the larger part of the PL and is where the HW VM is deployed
after receiving it over the OpenStack worker. The HW VM that is being deployed
contains the user accelerator and a monitoring component as mentioned previously.
This component is provided as part of the platform; however, the accelerator designer
must feed it with the appropriate monitoring data which will then be send to the PS.

8.3.2 Software

A large part of the innovation in the programmable cloud platform comes from
its software. At the core of the software is the modified, programmable logic-aware
OpenStack (compute) worker node which is assisted by low-level software that inter-
faces with the Xilinx DMA driver, the DevC driver that feeds data into the PCAP, an
FPGA component that is responsible for performing the actual DPR, and a pseudo
libvirt library that poses as a counterpart to the worker and answers queries regard-
ing the available resources of the device through an extended API as described in
Sect. 8.3.3. As the FPGA SoC in the PCP is single-tenant, the libvirt is a, respectively,
simple component. From a high-level perspective, workers executing a modified ver-
sion of the compute service client are responsible for managing the VMs. Quite sim-
ilar to its original purpose, workers can deploy, terminate, and reboot VMs, as well
as run monitoring services to provide valuable information such as FPGA resource
utilization. Given the simplicity of HW VM deployment in PCP, this module is at this
stage, respectively, simple but it is bound to grow more complicated as the platform
develops.

Additionally, the worker can take of the migration of an HW from one FPGA to
another. This is a nontrivial exercise in an FPGA-based VM, as the entire config-
uration of the programmable logic has to be read out of the device, and then send
to a remote node which will redeploy this to a different FPGA. In order for this to
happen, execution of the HW VM has to halt first, which means that the worker
stops accepting new data for this host, waits for all processing to complete, and then
starts reading out the FPGA configuration, which is packaged and then passed on to
the OpenStack controller over the network for deployment on a different node. The
redeployment process is identical to the deployment of a new VM from a worker
perspective. It is worth noting that since programmable logic configuration are com-
pletely bound to a specific device type, an HW VM that has been read out from a
specific Zynq device (say the Zynq 7045 used in the PCP) can’t be automatically
deployed to a Zynq 7030 but only to a different Zynq 7045. This limits the flexibility
of the migration process, but is a fundamental limitation of how configuration files
for FPGAs work.
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Furthermore, an overlay to the Xilinx DMA driver has been written which takes
care of all the low-level driver functions necessary to create and initialize the DMA
channels for reading and writing to the device and presents a character device driver
in order to simplify data copying from the OpenStack worker to the PL. Special care
has been given to make this a zero-copy driver to maximize the impact of the SW
stack on performance.

An important aspect that must be taken care off in the software stack is the syn-
chronization between data traffic and the deployment of a new VM. It is imperative
that when the VM is retired and the programmable fabric is to be reconfigured,
all pending transactions between the VM and the SW have been completed. This
includes all DMA transactions for both the actual accelerator and any monitoring
data that might be transferred at any given time. If stale data remains in the AXI
interconnect, then this will lead to unpredictable behavior from which it might be
impossible to recover. The SW stack takes special care of this by synchronizing
the threads passing the data from the OpenStack agent on to the fabric. Thus when
a new deployment request comes down for execution, the software is notified and
stops receiving new transfers from that point on, while at the same time locking the
deployment thread until all outstanding transactions have completed. The VM image
(essentially the bitstream) can then be passed on to DevC driver which will perform
the reconfiguration. The locks will then be released so traffic can start flowing again
to and from the accelerator.

Finally, the software stack includes a monitoring component which reads the
monitoring data of the dedicated AXI DMA channel, writes them into a local file,
and transmits them to a remote server over the well-known curl utility, which has
been cross compiled for the Zynq platform.

8.3.3 Making OpenStack FPGA-Aware

When it comes to deploying a VM using a multi-tenant OpenStack topology, the
OpenStack compute worker node is only one side of the coin. The other side is the
OpenStack controller node which is responsible for running services that direct and
manage the deployment of tasks in the pool of worker nodes it supervises. It also
provides a single point of access through API services for communication with the
other components of OpenStack. Deploying an HW VM correctly requires not only
an adapted worker but also and an FPGA-aware OpenStack Controller node. Related
aspects of the controller’s functionality that were taken into account and modified in
order to make it FPGA-aware for the needs of the proposed solution are listed below:

e Adaptation of the scheduler service to recognize, locate, and manage programmable
logic-based devices and assign HW VMs to them. The allocation of VMs to tenants
is done based on several filtering functions that apply criteria to select the most
suitable tenant that will host a VM. The selection is done based on a predefined
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set of metrics and information gathered from the monitoring services running on
the worker nodes.

e The OpenStack Nova API service has been extended in order to include the calls
to platform-specific functions. In this direction, additional commands have been
added to the API that allows the management of the HW VM images by iden-
tifying and deploying them. So far the changes are command-line only. It goes
without saying the extensions on the Nova API are backward compatible and are
implemented with respect to the Nova developers policies. This is accomplished by
taking advantage of the API Microversions framework that allows for specification
of the API version that will be used in any circumstance.

e The Conductor service that also runs on the Controller node had to be slightly
adapted in order to maintain access to the default relational database used by
OpenStack for storing stateful information regarding the status of the platform.
OpenStack’s messaging queue is put to use to an extent that allows the brokerage
of our system-specific messages between worker nodes, API service, scheduler,
and the network service described below.

Another important aspect of deploying VMs over OpenStack is the provision and
management of basic networking services. For the allocation of IP addresses and
setup and configuration of the virtual networks of the host nodes (PCPs), a Nova-
network service runs on the controller node that provisions services such as NAT
and DHCP. A Nova-network client that executes on the worker node is responsible
for configuring the network interface of the respective PCP-host. The Nova-network
service was selected over the more advanced OpenStack Network Service (neutron)
due to the added complexity and due to the fact that our requirements at this stage of
the platform do not command for advanced networking topologies, or services such
as load balancers and VPN which are offered by neutron.

Since the PCP is a compute only node, our modifications focused on the Nova
component which is responsible for managing compute tasks but also extend to
Glance, which administers the VM images used to deploy the VMs. Thus, the Glance
component was modified to be able to manage HW VMs. Glance can now store these
VMs and identify which ones are destined for FPGA SoCs and which not, avoiding
mishaps during deployment.

It’s worth noting that the changes performed are generic and do not limit PCP to
being used with the development system currently used. Instead, any FPGA SoC can
be used and even any FPGA provided its connected to a processor which can act as
proxy for the OpenStack worker.

8.4 Experimental Results

PCP has been implemented using a Xilinx ZC706 development board which contains
a Zynq xc7z045 FPGA SoC device. The board contains a Gigabit Ethernet interface
which is used to connect the CPUs to the OpenStack controller and the traffic source
and sink and an SD card which contains the boot image for the A9 CPUs. Thus, net-
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work traffic entering the system is fed directly into the CPU for processing meaning
all traffic to and from the accelerator goes through the A9s. This is mandatory since
OpenStack has to perform network address translation on incoming data, which is
performed at the SW level.

Evaluating the performance of our platform entails two separate aspects. First
of all, we must ensure that the software stack running on the relatively weak A9
processors doesn’t limit the capabilities of the programmable logic meaning that all
OpenStack-related functionality is performed in a timely fashion. Furthermore, it is
equally important to show that the HW VM running on the system’s programmable
fabric can indeed provide tangible benefits for a common application (Fig.8.5).

Another important aspect of VM deployment is migrating a VM from one node to
another. This process was described in Sect. 8.3.2 and entails reading out the HW from
the programmable logic via the DevC driver, sending it to the OpenStack controller
and then redeploying it to a new device. We have measured the time the whole process
takes and provided the data, breaking it down into its constituent parts (Fig. 8.2).
Figure 8.3 illustrates the results averaged out over a set of 100 measurements.

The figure shows that reading the configuration out of the existing deployment
(including stopping all traffic to that VM first) takes up only a small fraction of
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the total time it takes to migrate the VM completely. Migration time stands for the
time required to send the data back to the OpenStack controller, while redeployment
involves all the tasks detailed in Fig. 8.3, which are repeated when the VM is passed
on to a new FPGA SoC node.

In order to evaluate the overhead caused by OpenStack processing on the Zynq’s
PS subsystem, we measure the time it takes to deploy one HW VM from the moment
the appropriate command is passed to the controller, until the completion of the
partial reconfiguration on the programmable fabric. Figure 8.3 illustrates how much
time each part of the deployment cycle takes. The total process takes almost exactly
20 s with the bulk of the time being consumed by the setup of the compute instance
followed closely by the creation of the necessary virtual network interfaces. While
not negligible this time is on par with the deployment of SW VMs especially when
one considers that an HW VM is readily available after being instantiated whereas
an SW VM also has a substantial boot time. The actual reconfiguration of the fabric
itself takes only a fraction of a second and can be safely ignored in this context.

The second facet that needs to be evaluated is whether the overhead incurred
on the data when passing through the OpenStack worker during the HW VM’s
operation is low enough as well as the identification of sources of delay so that
future improvements may be targeted accordingly. Figure 8.4 provides an overview
of the form of a normalized pie chart of where in the software stack the time is spent
when sending and receiving data traffic from and to the HW VM.

It’s obvious from the above that the bulk of the processing cycles goes into TCP
and OpenStack processing. TCP/IP is well known to be a processor cycle-hog [6],
and this is verified on this platform as well even when only using a 1Gbps link. It is
clear that the current software would not be able to support higher network data rates
unless some sort of TCP acceleration (e.g., [12]) was utilized. This however would
be implemented in the programmable logic and thus siphon resources away from
the dynamic area and would still require the data to be shipped to the processor for
the required OpenStack processing. OpenStack itself performs address translation
on all incoming and outgoing packets, which is the reason behind its high cycle use.
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Fig. 8.5 Performance comparison of various implementations of the h264 decoder with a Xeon
E5-2637 for a VGA video

A straightforward solution would be to simplify this processing given that PCP is
a single-tenant platform, and thus, cohabitation of multiple user VMs is precluded.
This is consigned to future work.

For the evaluation of the PCP, we have developed an h264 video decoder based on
the OpenH264 software code provided by Cisco [5]. That code was reworked exten-
sively to convert it to synthesizable C++ code which was then fed into Vivado HLS.
There are three different versions of the design as shown in Fig. 8.5. The leftmost
version represents the initial synthesizable version with no additional optimizations
applied. The changes in this version can be essentially summed up in eliminating
dynamic memory management prevalent in many areas of the original code. Thus
the buffers and the context for each NAL [14] are now statically allocated.

The middle version includes optimizations made to the function hierarchy to
minimize the impact of function calls, while the rightmost version represents a version
that has been optimized and parallelized until the whole of the dynamic area was used
up. It’s worth noting that despite these modifications, the code was never rewritten
from the ground up, and thus, it still maintains a structure which is not necessarily
optimal for an HW module. Nevertheless, it shows that even with relatively modest
reworking of existing SW code, considerable benefits can be reaped with the PCP.

Besides performance, resource use is an important parameter in FPGA designs.
Table 8.1 provides the resource use numbers for the three variations of our h264
decoder. We can see that, as expected, the higher performing, more optimized variants
consume significantly higher resources with the parallel implementation occupying a
sizable chunk of the Zynq 7045 device used. Take in correlation with the performance
number in Fig. 8.5 we can see that attaining a significant boost in comparison to
standard x86 CPUs requires that a considerable part of the whole device is used
(keep in mind that the number quoted on Table 8.1 does not include the overhead for
the static area of our design, which is roughly 4.5% of the resources, as stipulated in
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Table 8.1 h264 Decoder resource use on a Zynq 7045 FPGA SoC

LUTs (%) FFs (%) BRAM (%) DSP (%)
Baseline 31172/14.26 35151/8.04 19/3.57 36/3.96
Function 71526/37.72 74062/16.94 36/6.67 78/8.7
optimization
Parallel 151381/69.25 148561/33.98 85/15.63 156/17.34
Total (Zynq 7045) | 218600/100 437200/100 545/100 900/100

Sect. 8.3.2). This vindicates our decision to keep the dynamic area single-tenant in
order to simplify the design of the system.

8.5 Conclusions

This paper introduced the programmable cloud platform, an FPGA SoC-based sys-
tem which allows programmable logic to be exposed as a resource over a standard
cloud environment like OpenStack. The system utilizes the devices ARM A9 proces-
sors to run the OpenStack agent and thus frees the programmable logic to accelerate
tasks which are deployed as HW VMs. We use an application amenable to FPGA
acceleration like h264 decoding to show that the platform allows for the swift deploy-
ment of the VNF and can feed it with sufficient data to reap tangible performance
benefits. However, the cost of running OpenStack on a relatively weak processor is
significant, and thus, one of the key issues to be tackled in the immediate future is
the streamlining of the SW part to minimize this overhead. Additional work includes
the extension of the platform’s capabilities by integrating additional interfaces into
the dynamic area.
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Chapter 9 ®)
Energy-Efficient Servers and Cloud e

Huanhuan Xiong, Christos Filelis-Papadopoulos, Dapeng Dong,
Gabriel G. Castaiié, Stefan Meyer and John P. Morrison

9.1 Introduction

As the sizes of cloud infrastructures continue to grow, the complexity of the cloud
is becoming more and more difficult to manage. Currently, centralised management
schemes dominate and there are already signs that these are no longer fit for pur-
pose. Elasticity, for example, (the ability of the cloud to respond to rapidly changing
demands for resources) is currently being supported by over-provisioning. Over-
provisioning is a strategy of effectively underutilising hardware so that some is
always available to absorb unpredictable peaks in demand. This strategy is not sus-
tainable, since the infrastructure costs and the energy it consumes, even when idle,
are significant. In 2010, Gartner Research [14] reported that the average server utili-
sation in large data centres is 18%, while the utilisation of x86 servers is even lower
at 12%. These results confirmed earlier estimations that the average server utilisa-
tion is in the range of 10-30% [7]. Subsequent studies have not contradicted these
findings [16, 19].

Cloud computing is evolving from its homogeneous roots and is being seriously
regarded by once highly specialised application domains like high-performance com-
puting (HPC).

To support this trend, heterogeneity is a must [11]. HPC technology trends in
coprocessors are on the increase and NVIDIA GPGPUs and Intel Xeon Phi are
gaining increased traction. Low-power processors are beginning to find their place
in the HPC ecosystem and HPC public cloud revenue could range from $1.56 billion
(low forecast) to $3.7 billion (high forecast) by 2017 and for HPC public custom
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cloud computing, worldwide revenue could range from $0.87 billion (low forecast)
to $1.5 billion (high forecast) in the same period.

Incorporating energy-efficient heterogeneous resources help to address power
consumption in the cloud. However, their inclusion also adds to the complexity
of the already overburdened cloud management scheme and this must be explic-
itly addressed. Energy efficiency in cloud computing can be considered as a com-
plex optimisation problem, which attempts to minimise power consumption while
satisfying quality-of-service (QoS) or service-level agreement (SLA) requirements
specified by users. Energy-aware resource provisioning and allocation is a way to
improve energy efficiency without violating the negotiated SLAs or application per-
formance [3, 4, 15]. Research shows that the objective of energy efficiency is not an
independent or stand-alone issue from other cloud resource management objectives,
such as QoS/SLA, resource utilisation and workload performance (e.g. execution
time, intensity), for example, and, unfortunately, there would appear to be no sin-
gle equation capable of expressing all the inter-dependences between the multiple
objectives.

The CloudLightning project takes a novel route, making use of self-organisation
techniques to address the problems emerging from the confluence of issues in the
emerging cloud: rising complexity and energy costs, problems of management and
efficiency of use, the need to efficiently deploy services to a growing community
of non-specialist users and the need to facilitate solutions based on heterogeneous
components. Thus, this approach attempts to address

e Energy efficiency.
Self-organisation is a powerful tool for addressing complexity of large- to hyper-
scale cloud resource management. It has proven itself time and time again in nature
and has been applied successfully in complex engineering projects [12]. Of self-
organisation, Alan Turing once observed that global order arises from local inter-
actions. We contend that when self-organisation is applied to self-management,
local interactions can give rise to scalable global management. Moreover, given
the appropriate evolutionary stimuli, the resultant global management can be
optimised for specific characteristics. CloudLightning proposes a self-organised
self-managed (SOSM) framework for providing energy-efficient cloud resource
provisioning and allocation (see Sect.9.3).

e Improved accessibility to cloud.
The CloudLightning SOSM system provides cloud service consumers with a user-
friendly service-level interface to explicitly declare their requirements for service
delivery. Through the assembly of dynamic resource coalitions, the SOSM system
automatically and intelligently locates the required resources and chooses the most
appropriate configuration to deliver that service, while respecting both the user-
level SLA and the business objectives of the cloud service providers (CSPs). CSPs
are thus enabled to provide energy-efficient, scalable management of their cloud
infrastructures and better overall utilisation of service.

e Supporting heterogeneity.
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To support heterogeneity, CloudLightning brings various coprocessors into exist-
ing homogeneous cloud environments. These include graphic processing units—
GPUs, many integrated cores—MICs, field programmable gate arrays—FPGAs.
The availability of different resource types can alter the way that solutions are
designed. Mapping a problem onto an architecture specifically designed with that
problem in mind can greatly improve efficiency and simplify implementation. Sec-
ondary benefits are often obtained such as speed, improved precision of solution
and reduced power consumption. These are important drivers for both the cloud
provider and for the end user. CloudLightning also provides a plug-in mechanism
for incorporating heterogeneous resources into the self-organising cloud. Pertinent
characteristics of these resources are surfaced, through the plug-in mechanism, to
the end user via the service description language; making these resources easier
to consume.

The three objectives listed above are tightly coupled aspects of the CloudLight-
ning system. A complete description of the CloudLightning system is necessary to
express the subtle interplay between the objectives and the architecture of the solu-
tion needed to address them. However, here the CloudLightning system is described
predominantly from the energy efficiency perspective and the advantages that flow
from exploiting hardware accelerators and the challenges associated with balancing
energy consumption with improved service delivery.

The remainder of this chapter is organised as follows. Section9.2 presents
the CloudLightning hierarchical architecture and its main components. The self-
organised self-managed framework with respect to energy-efficient resource man-
agement is described in Sect.9.3. Finally, Sect.9.4 presents the evaluation of our
proposed approach and Sect. 9.5 concludes with some final thoughts.

9.2 CloudLightning Architecture

Large-scale data centres typically make use of a hierarchical model for organis-
ing the compute, storage and network infrastructures. The warehouse scale com-
puter (WSC) [2] is a typical hierarchical architecture widely used by companies like
Google, Yahoo, Amazon, Facebook, Microsoft and Apple [1, 9, 17] for this purpose.

The CloudLightning architecture is also a hierarchical organisation of physical
infrastructure but unlike traditional organisations it makes use of a resource manage-
ment framework that is logically hierarchical. The bottom layer of this framework
hierarchy consists of many resource managers. These managers are autonomous and,
in contrast to traditional systems, each manages a relatively small number of phys-
ical resources. Since the number of physical resources is restricted, each manager
can efficiently control the collection- allocating tasks and, where appropriate, virtu-
alising resources in response to service requests. This arrangement is self-limiting
in the sense that an increase in the number of physical resources attached to such
a manager spontaneously results in a new manager being brought into existence to
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Fig. 9.1 A representation of the CloudLightning architecture

assume the control over the extra resources should the increase in physical resources
exceed a specific cost management threshold. In this way, a first step is taken to
tackle the problem of scalability in resource allocation. However, this enhancement
to the topology of the hierarchy forms only a partial solution, since no mechanism
is yet provided to identifying an appropriate resource manager, from many potential
candidates, that will make the final resource allocation decision.

The CloudLightning architecture is depicted in Fig.9.1.

9.2.1 Cell

At the top of the hierarchy, a cell represents the entire set of physical resources.
These are partitioned into different hardware types (including CPUs, CPU-GPU
pairs, CPU-MIC pairs and CPU-FPGA pairs) and each partition is accessed via a
dedicated pRouter.

9.2.2 pRouter

Each pRouter provides access to hardware resources of the same type which, in turn,
is managed by a specific resource abstraction method (such as OpenStack Nova' to
manage virtual machines on commodity servers, Kubernetes,” Mesos® [10] and/or

1OpenStack Nova: http://docs.openstack.org/developer/noval/.
2Kubernetes: http://kubernetes.io/.
3 Apache Mesos: http://mesos.apache.org/.
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Docker Swarm* to manage containers on GPUs and MICs, and OpenStack Ironic?
to manage bare metal servers using DFEs).

Some examples of the constitution of the pRouters in CloudLightning architecture
include

e OpenStack-CPUs-VMs: Commodity machines (CPUs) pre-installed with Open-
Stack services.

e OpenStack-FPGAs-accelerators: FPGAs configured as compute accelerators using
the OpenStack Nova service.

e Mesos-GPUs-accelerators: GPUs configured as compute accelerators using the
Mesos framework and Docker Engine.

e Marathon-MICs-accelerators: Marathon as the resource manager managing a clus-
ter of Xeon servers with attached MICs.

Each pRouter is connected to one or more pSwitches.

9.2.3 pSwitch

pSwitches are used to further partition the resource space into smaller and more
manageable domains composed of multiple virtual Rack Managers (VRMs). How-
ever, the number of pSwitches per pRouter is not fixed and can change over time.
Similarly, the number of VRMs, being managed by each pSwitch, can also change
over time in response to dynamic growth and shrinkage of the resource fabric.

pSwitches and vRMs can self-organise by exchanging constituent members. Thus,
two of more, pSwitches may exchange control over a subset of their respective vVRMs
and, similarly, two within groups, which will be called cooperatives, to emphasise
their self-organising nature. To prohibit the creation of cooperatives with different
resource types, pSwitch cooperatives cannot span pRouters. Similarly, to minimise
administrative overhead, VRM cooperatives cannot span pSwitches.

As the CloudLightning system evolves, it is anticipated that the number of
pSwitches connected to a pRouter will change and will converge to some optimal
number with respect to some global goal set by the cloud service provider. This goal
is expressed as a vector of weights that are propagated down through the manage-
ment hierarchy and alter the perceived importance of the underlying behaviours. As
part of the self-organisation process, pSwitches and vRMs can be created, destroyed,
merged and split.

“Docker Swarm: https://github.com/docker/swarm/.
>OpenStack Ironic: http://docs.openstack.org/developer/ironic/deploy/user-guide.html.
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9.2.4 vRack Manager

At the bottom of the hierarchy are a collection of resource managers known as the
virtual Rack Managers (VRMs). These are responsible for the efficient management
of the collection of resources directly under their control. vVRMs also communicate
weighted status information pertaining to these resources upwards through the hier-
archy.

It is anticipated that the number of VRMs connected to a pSwitch and the number
of pSwitches connected to a pRouter will change and will converge to some optimal
number; derived from the weights coming from the pRouter and from the vRM’s and
pSwitch’s efforts to converge to a local goal state. As part of the self-organisation
process, VRMs and pSwitches can be created, destroyed, merged and split. Further-
more, they may exchange control over resources in an effort to maximise resource
utilisation, to minimise energy consumption and to optimise management utility.

9.3 Hyper-scale Resource Management for Energy
Efficiency

In the CloudLightning system, the process of identifying an appropriate resource
manager to affect the next resource allocation decision is distributed throughout the
entire logical hierarchy. It begins at the VRM level, where information relating to the
functional capabilities, and the non-functional behaviours, of its constituent resources
forms a view of these resources, which is then propagated upwards through the
hierarchy. In this upwards propagation, and at each intermediate level in the hierarchy,
this information may be combined into a higher level view, in many different ways,
with similar information emerging from different elements from the lower level of
the hierarchy. These views are called Perceptions and are used to guide the resource
allocation requests entering the system at the top of the hierarchy. The contention
is that the most appropriate resource allocation is to be found by following the
path exhibiting the greatest perception, since this path simultaneously maximises
the chances of locating the requisite resources and of optimising the non-functional
behaviours.

CloudLightning develops a strategic self-organised self-managed framework to
support distributed resource allocation decisions and that can be dynamically pop-
ulated with strategies to reflect the ever-growing number of diverse objectives as
they become evident in the evolving cloud infrastructure. In the CloudLightning
approach, cloud service providers can define various strategies by which cloud
resources are allocated, and system/cloud objectives (from energy efficiency per-
spective) are attained.

In the CloudLightning approach, these objectives can be expressed as assessment
functions (see Sect.9.3.1). These outputs of assessment functions are aggregated as
they pass upwards through the hierarchy, the components in each layer of the hierar-
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Fig. 9.2 An example of resource allocation path based on SI

chy (i.e. cell manager, pRouters, pSwitches and vRMs layers), and then use various
strategies to calculate a value known as the suitability index (SI) (see Sect.9.3.2).
This index indicates the suitability of the underlying region to host the next service
request. Thus, a pathway guiding a service request to the place where it is most likely
to find resources to host is determined by always choosing to enter a region having
the greatest SI. This is illustrated in Fig.9.2.

9.3.1 Assessment Functions

In CloudLightning, assessment functions output metrics are used for monitoring
and reflecting the state of the cloud infrastructure, including functional and non-
functional behaviours such as computation performance, power consumption, and
management cost. Achieving energy efficiency in the cloud is not simply a matter
of reducing power consumption in isolation. Power reduction must be done in the
context of guaranteeing workload computation performance; maximising the com-
putation performance within a particular power consumption budget. Therefore, it
makes sense to express the various aspects being captured by the CloudLightning
assessment functions in terms of energy efficiency.

Performance per watt is a measure of the energy efficiency of a particular computer
architecture or computer hardware.

Performance

Jow=—"". 9.1

Power

Computational performance could be evaluated in measurable, technical terms,
using one or more metrics, such as CPU/memory utilisation, throughput, floating
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point operations per second (FLOPS), millions of instruction per second (MIPS) and
bandwidth.

Usually, the performance of a hardware configuration can be measured by any
appropriate benchmark (such as SPECpower® and EEMBC.”) Power models vary
for different hardware types and hardware usage. For example, a commonly used
linear power model [4] for CPU-based servers is

P(M) = Pmin + (Pmax - Pmin)ua (92)

where u € [0, 1] is the CPU utilisation, Py, is the idle power consumption, Pp,y is
the maximum power consumption.

9.3.2 Suitability Index

In CloudLightning, the concept of Suitability Index (SI) is created for measuring
how close a component is to its desired state, and hence how suitable its operating
characteristics are for contributing to the global goal.

argmax 7 (w', m"), (9.3)

wt,mleRY

where w' is an N-dimensional vector of weights corresponding to the impetus in
the ¢-th level and m® is an N-dimensional vector of metrics corresponding to the
perception in the £-th level. Generally speaking, w® presents the influence factor from
the upper level indicating the perspectives from application characteristics, system
objectives, service-level agreement, etc., and m’ is the perception value (i.e. mean
and/or maximum) of the lower level giving the average and/or the best performance
view over the underlying system.

Overall, in terms of different characteristics of assessment functions, SI can be
used to indicate the most suitable location to host incoming service requests. Thus,
when the assessment functions are chosen to reflect the energy consumption with
respect to different aspects of computation performance, the SI will indicate the most
energy-efficient location in the cloud resource fabric for hosting the next incoming
service request. Similarly, if the assessment functions are chosen to reflect the man-
agement costs associated with different cloud configurations, the SI will indicate to
the most efficient place to host the next incoming service request, with respect to that
management cost.

Figure 9.3 depicts the various applications of using the suitability index to achieve
different goals.

SSPECpower: https://www.spec.org/power_ssj2008/.
TEEMBC: http://www.eembc.org/.
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9.3.2.1 SI Strategy on CM

In the CloudLightning system, the cell manager needs to decide on which resource
type is the most appropriate for hosting the next incoming service request. When
user’s SLA objectives are satisfied, a choice can be made from the remaining types,
which maximises system objective (e.g. maximising energy efficiency).

The energy consumption for a specific service is often modelled as the integral of
the power consumption function over the execution time for completing the applica-
tion (mostly for batch and HPC workloads, not for the long-run web applications)

E= / PGu(t))dr, 9.4)

fo

where u(#)is the CPU utilisation function of time, which may change over time due
to the workload variability. #; — #y denotes the application execution time.

The SI strategy on cell manager is to find the most suitable pRouter (that is, a
specific resource type) for a specific service workload with the respect to energy effi-
ciency. Therefore, the cell manager has to calculate/predict the energy consumption
for each possible hardware type which might run that application workload based on
their current state and with knowledge of the service characteristics and hardware
characteristics.

In some cloud simulators [5, 13, 18], service workloads can be modelled with
three parameters: (i) input size, (ii) processing length, measured in millions of instruc-
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tions (MI) and (iii) output size. The number of instructions can be calculated by the
computational capacity (capability) of the processors (can be virtual machines or
accelerators) multiplied by the service workload execution time. The service execu-
tion time can be computed from profiling the application with respect to parameters
such as input size. Thus, the estimated execution time of the application workload
running on a specified hardware resource (represented by a pRouter i) is

NMI

= ——
MIPS >
Ni

9.5)

where NM!' is the number of instructions in that service, and NS (MAX) is the
maximum number of instructions per second (MIPS) from pRouter i.

The total computational capacity of pRouter i hosting N;,,.,s number of servers,
N, number of accelerators per server, with C,,,,,. the combined computational capac-
ity (in MIPS) of all processors (CPUs) of a server and C,,,.. the computational capacity
(in MIPS) of an accelerator, can be defined as follows:

C[pr = Cpruchervers + CLICCN(IL'CNSEVUEVS (MIPS) M (9'6)

The computational capacity (in MIPS) of the i-th pRouter (C") can be defined in
terms of servers executing a task

u

N,
Cll'jr =C £ + Cuchu

= Cypoe . (MIPS), 9.7
P Npmc acc ( ) ( )

where Ny is the number of processing units per server, Ny, € [0, NpmNse,vm] is

the number of utilised processing units with respect to all servers under a pRouter

and Nj;.. € [0, NyceNservers] is the number of utilised accelerators with respect to all

servers under a pRouter. The result of Eq. (9.7) would be similar for all resources
at the beginning since no task has entered the system. Thus, in order to distinguish

between resources, a random number can be added on the SI.

In order to compute the power consumption per pRouter we can utilise the model of
Eq. (9.2). The power consumption for the accelerators is considered to be binary, since
accelerators are either used or not and cannot be shared between virtual machines.
The power consumption of the pRouter i can be estimated as follows:

u

o N roc
Pfr = (Pmin + PaLCNacc) Nververs + (Pmax - Pmin) N[’ > + (PMC - Pa“)Nu

min max min acc
proc

W), (9.8

where N, is the number of processing units per server, N[‘,‘mc € [O, NprocN, vm,g,.s] is

the number of utilised processing units with respect to all servers under a pRouter

and N}, € [0, NyceNservers] s the number of utilised accelerators with respect to all

servers under a pRouter. The quantities Py and Py are the idle and the maximum

power consumptions of an accelerator, respectively.
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Therefore, the computation of the suitability index (SI) of each pRouter, at the
cell manager, can be performed as follows:

SI”" = C" /P (MIPS /W). 9.9)

This metric can be used in conjunction with the available (status) information
to guide a task to the most efficient resource in terms of higher MIPS/W. The
aforementioned equations can be reformed to take into account the overcommitment
of resources. Guiding the task below the pRouter level can be performed using the
same definition for the SI or the definition given in [8].

Similarly, the computation of the SI of each pSwtich (at a pRouter), and the
computation of the SI of each vRM (at a pSwitch), will follow the same pattern as
described in Eqs. (9.7), (9.8) and (9.9).

9.3.2.2 SI Strategy on vVRM

The SI strategy on VRMs is quite different from the cell manager, pRouters and
pSwitches, since the vRMs have up-to-date state information for all the resources
under their control. vRMs can make accurate and timely decisions about the resource
allocations with the respect to energy efficiency locally.

In CloudLightning, three strategies are applied to achieve energy-efficient resource
allocation.
(1) Best energy-efficient node

The simplest strategy for a VRM to achieve energy efficiency is to deploy the
virtual machine (VM) onto the most power efficient node (i.e. server). This strategy
would appear to prioritise server utilisation, however, success in selection depends
on there being sufficient resources available from that server to satisfy the VM’s
requirement.
(2) Bin-packing

The objective of this approach is to minimise the energy consumption by placing
VMs onto the minimum number of hosts. The model can be described as follows [6]:

min Z Zp,-jv,-j + Z P;h;

ieV jeH jeH
S.t. Zrivij < Ch] Vj eH
eV
> vy = 1 VieV
jeH
Vjj <l VieV,jeH
vjj e {0,1} VieV,jeH
h; e {0, 1} VjeH, (9.10)
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where H is the set of hosts, V is the set of VMs in the cloud fabric, the objective is to
decide how to rearrange V on H such that the total power consumption in the system
is minimised. All v € V requirements r;, such as CPU, memory and storage, must
be satisfied by the targeting host; each & has a resource capacity limit C. The total
power consumption is the sum of power p;; consumed by CPUs of each VM i on host
J» plus a fixed power P; consumed by the other components of host j, such as memory
and I/O. Let h; = 1 represent choosing host j to be switched on, and 0 otherwise.
Also, let v;; = 1 represent the assignment of VM i to host j, and 0 otherwise. The first
constraint enforces the capacity limit on each host. The second constraint ensures
that each VM is assigned to exactly one host. The third constraint guarantees a host
to be switched on if and only if a VM has been assigned to that host. The last two
constraints indicate the state of a VM or host is either to be on or off.

However, this approach does not take the service workload characteristics and
overcommitment into account, the next strategy applies the bin-packing with over-
commitment ratio to further optimise the energy efficiency within a vRM.

(3) Bin-packing with overcommitment

There are three basic types of scheduling execution for VMs residing on a server:

space-sharing, time-sharing and hybrid (time—space) policies.

e Space-sharing policies divide the system into partitions of processors so that more
than one task can run on the system simultaneously; each on its own group of
processors.

e In atime-sharing model, computer resources are committed and tasks are executed
at the same time among many users. Time-sharing policies adopt pre-emption to
alternate processors among a number of tasks that is usually determined by the
multiprogramming level.

e Hybrid models (space—time sharing) combines the benefits of the two aforemen-
tioned types of policies. In a hybrid model, the system is divided into multiple
processor groups and each group adopts a time shared policy by a distinct set of
application tasks.

The time-sharing and hybrid model are commonly used in overcommitment of
CPU and memory resources, which can increase server utilisation. However, for
compute-intensive workloads, overcommitment of resources can reduce performance
and subsequently increase energy consumption, since the tasks are competing for
resources. While for the communication-intensive workloads, the overcommitment
of CPU and memory resources can be less harmful with respect to performance.

Thus, each VRM can customise its own overcommitment ratio with respect to
the available physical resources (i.e. CPU, memory and network) and the work-
load characteristics, dynamically adjusting the overcommitment ratio of its asso-
ciated resources to maximise the energy efficiency without violating the service
performance.



9 Energy-Efficient Servers and Cloud 175

Table 9.1 Characteristics of the resources

Resource Cproc Cace Nproc Nace Nservers | Pmin Prax P ;anLl; P gﬁfx
1 160,000 | 0 16 0 500 100 500 0 0
2 160,000 | 480,000 | 16 4 500 100 500 50 250

9.4 Evaluation

In this section, the scheme for computing the SI, in the cell manager level, is evaluated.
Without loss of generality a cell is considered as having two types of hardware. The
characteristics of these resources are given in Table9.1. For simplicity, tasks are
considered to fully utilise underlying resources and implementations exist for both
tasks. The length of the task queued at each time step was computed as a rounded
random value, obtained the uniform random distribution, in the interval [0, 0.85].
Thus, the total number of tasks that entered the system was 35,629. The tasks required
2,4,8, 16 virtual cores and 1, 2, 3, 4 accelerators, respectively, following uniform
random distribution. The number of instructions for a task was computed in the
interval [100, 5000] MI using a uniform random distribution. The simulated time
was 172,800 s. Tasks enter the system with respect to the aforementioned parameters
for the first 86,400 s, while for the last 86,400 the system is left to finish execution
without incoming tasks. The energy consumption is computed as the integral of power
consumption over time. The integral is computed numerically using the rectangle
method.

The first experiment concerns the computation of the ST using Egs. (9.6), (9.8) and
(9.9). In Fig.9.4, the suitability indices (MIPS/W) computed with Egs. (9.6), (9.8)
and (9.9) for the two types of hardware are given. In the beginning, and up to time
step 1841, tasks flow to the hardware of Type 2, since its SI has the highest value.
When the value of the SI of hardware Type 2 reaches the value of the SI of hardware
Type 1, tasks start to flow to the resources of Type 1. From time step 1842 to time
step 2350, the two pRouters are competing for the incoming tasks, since the SIs are
almost similar in value. From the time step 2351 to time step 86,000, the pRouter
hosting hardware of Type 2 is almost completely utilised; thus, most of the tasks flow
to the pRouter hosting hardware of Type 1. This process leads to an overall power
consumption of 25.5129 MWh.

The second experiment concerns the computation of the SI using Egs. (9.7), (9.8)
and (9.9). In Fig. 9.5, the suitability indices (MIPS/W) computed with Egs. (9.7),
(9.8) and (9.9) for the two types of hardware are given (first task arriving to pRouter
hosting hardware of Type 1). In this experiment the initial value of both SIs is 0,
thus the first task flows to the first available pRouter (e.g. Type 1). The following
tasks also flow to pRouter hosting hardware of Type 1 until it is almost completely
utilised. Then, tasks start to flow to the pRouter hosting hardware of Type 2. Due to
the large value of the SI of the pRouter hosting hardware of Type 2 the majority of the
tasks continue to flow there, while a small fraction of the tasks flow to the pRouter



176 H. Xiong et al.

hosting hardware of Type 1. This process leads to an overall power consumption of
26.2064 MWh.

The initial hardware choice dictates the first task flows and impacts the direction
taken by the following tasks. In Fig. 9.6, the suitability indices (MIPS/W) computed
with Eqgs. (9.7), (9.8) and (9.9) for the two types of hardware are given (first task
arriving to pRouter hosting hardware of Type 2). This process leads to an overall
power consumption of 25.6172 MWh. Choosing the fastest hardware type first leads
to improved energy consumption, since the CPU—-Accelerator pair executes tasks
faster.

The energy consumption using Egs. (9.6), (9.8) and (9.9) is slightly reduced
compared to the other two approaches.

The last experiment concerns the computation of the SI following the initial
approach given in [8], with

Nyid = Npvoc
SillNgy ) = CL=—— P2 ”Nmml =, (9.11)

proc

N Pi(N;%acl - N;roc) 9.12
f2( proc) - PNU _|_Pl_(Ntatal — Nu )’ ( : )

proc proc proc

and the vector of weights w = [1 1]. The suitability index is computed as SI =
wift + wafa, [8]. For the two types of hardware (1 and 2), the values of the relative
computational capability C were 1.0 and 3.0, respectively [8]. The values for the
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Fig. 9.4 Suitability indices (MIPS/W) computed with Egs. (9.6), (9.8) and (9.9) for the two types
of hardware
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Fig. 9.5 Suitability indices (MIPS/W) computed with Egs. (9.7), (9.8) and (9.9) for the two types
of hardware (first task arriving to pRouter hosting hardware of Type 1)
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Fig. 9.6 Suitability indices (MIPS/W) computed with Egs. (9.7), (9.8) and (9.9) for the two types
of hardware (first task arriving to pRouter hosting hardware of Type 2)
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Fig. 9.7 Suitability indices computed with respect to the original design given in [8]

relative power consumption P and the relative idle power consumption P; for hard-
ware Type 1 were 1.0 and 0.2, respectively, while for hardware Type 2 were 1.5 and
0.2, [8]. For hardware Type 2, Egs. (9.11) and (9.12) are computed with respect to
the total number of accelerators as well as the number of utilised accelerators. In
Fig.9.7, the suitability indices computed with respect to the original design given
in [8] are presented. In this approach, the two pRouters continuously compete for
acquiring tasks from time step 0-86,400. The pRouter hosting hardware of Type 2
is the first to receive tasks until the point where its SI becomes comparable to the SI
of the pRouter hosting hardware of Type 1. The energy consumption of the system
was 27.1687 MWh.

The proposed approaches for computing the SI lead to an overall improvement
between approximately 3.54—6.1% for the energy consumption. The computation of
the SI based on Egs. (9.6), (9.8) and (9.9) leads to the greater improvement, followed
up closely by the approach using Eqs. (9.7), (9.8) and (9.9) with first task arriving to
the pRouter hosting hardware of Type 2.

9.5 Conclusion

The CloudLightning project attempts to address resource management issues asso-
ciated with hyper-scale cloud deployments. The complexity of these deployments
makes the selection of the most suitable resource to host the next service request a
very challenging task. Decentralising the decision process is, itself, not sufficient to
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adequately address this problem, since any distributed collection of resource man-
agers still have to share relevant information and have to together decide on that
resource that meets both the service requirements and the business objectives of the
cloud service provider. These business objectives can be many and varied, and in the
CloudLightning project, they are captured through the use of weighted assessment
functions. These functions are used to measure various aspects of the status of the
system and this information is subsequently used to determine how close the sys-
tem is to achieving the business object associated with each respective function. By
dynamically weighting assessment functions, the cloud service provider can steer
the evolution of the system in the direction of those objects that reflect the providers’
immediate needs. As status information is propagated upwards through the Cloud-
Lightning hierarchy, it is combined into a view of the underlying levels. This view
reflects how well those parts of the system are performing with respect to the business
objectives and, by extension, how suitable those levels are to respond to imminent
resource requests. The suitability is reflected in a measure known as the suitability
index.

An important business object for cloud providers is to minimise energy consump-
tion. The CloudLightning architecture embodies many heterogeneous resources,
each with its own energy consumption and exploitation characteristics. The work
described here illustrates how the suitability index can be specifically tailored in
such a complex environment in support of globally minimising energy consumption.
This specially tailored form of the suitability index was evaluated empirically, and the
results were presented, showing the improvement of about 6% over the unspecialised
suitability index calculation.

The CloudLightning architecture is designed so that it can be easily extended with
amultiplicity of heterogeneous resource types. This is achieved using a plug and play
mechanism. When a new resource is added to the system using this mechanism, it is
assigned to an appropriate resource manager, so that it can be effectively managed.
Decision on the most appropriate resource manager to manage a resource is an
analogous process to deciding on the most appropriate resource to host a service.
Thus, the descriptor, representing a new addition to the resource fabric, follows the
path of the lowest (as opposed to the highest) suitability indices until it becomes
associated with an appropriate resource manager. This ensures that the resource is
placed into the system so as to maximise its utility in meeting the business objectives
and in balancing the values of the suitability indices across the cloud.

Acknowledgements This work is funded by the European Union’s Horizon 2020 Research
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10.1 Introduction

In today’s industry, an increasing amount of applications relies on vision-based tech-
niques. The resulting image processing systems cover a wide field of application,
examples being medical imaging, automotive advanced driver assistance systems
(ADAS) and unmanned aerial vehicles (UAVs). All these applications demand high
computing performance, yet strict requirements and constraints of an embedded sys-
tem have to be met. Therefore, both the embedded system and the image processing
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application have to be optimized. Embedded image processing systems are expected
to be a ubiquitous part of our society with a direct connection to cloud computing,
servers and data centres. Today, the complexity of systems is continuously growing.
The design and implementation of an image processing platform will be an even
more challenging task for developers. A non-optimized design cannot satisfy the
demand for low power and high performance.

Embedded platforms using a single processor do not offer enough processing
power to run modern image processing applications. On the contrary, the number
of sensors is growing and the system simultaneously has to deal with increasing
connectivity and data, which puts even higher requirements on the processing of
data and communication. The demands of modern and future low-power computing
systems are not met by current architectures. Embedded vision systems are often bat-
tery powered. Therefore, an efficient architecture is needed so that performance and
energy efficiency results in longer battery life and better user experience. Resource-
intensive image processing can be offloaded to cloud computing or data centres,
but this compromises real-time constraints and latencies of the application. Thus,
the embedded system has to deliver low-power yet high-performance computing for
image processing.

Regarding embedded platforms, there are two approaches to reach the perfor-
mance requirements of current image processing algorithms. The first approach is
to run the image processing applications on low-power graphics processing units
(GPUs). This can significantly improve processing power. The second approach
offers the possibility to further reduce energy consumption by using field pro-
grammable gate arrays (FPGAs) for image processing. Using state-of-the-art tech-
nology, both GPU and FPGA are connected to an embedded processor forming
a system-on-chip (SoC). Heterogeneous architectures offer promising features for
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modern vision-based applications. Each type of processing element has a type of pro-
cessing for which it performs best. To get the best out of an efficient heterogeneous
hardware platform, it is important to efficiently map the application onto the different
processing elements and manage its execution at runtime. The increasing demand for
vision-based systems also asks for reducing time-to-market, development and rework
costs on a product as well as maximizing reuse of designs. However, there is still
no standard for high-performance embedded computing systems on heterogeneous
platforms in the domain of vision-based systems.

TULIPP [1, 2] aims to push forward a reference platform defining implemen-
tation rules to provide designers with guaranteed high-performance solutions for
vision-based systems. TULIPP also considers flexibility and scalability for applica-
tions demanding more processing power. Therefore, the platform will be set up for
heterogeneous multicore and multiprocessor architectures. Several instances of the
platform can be combined to further increase processing performance. During the
project, a heterogeneous hardware reference platform, a real-time operating system
(RTOS) and a productivity-enhancing set of development utilities will be developed.
These three components will enable high-performance image processing for modern
low-power embedded systems and, in addition, will allow validating the implemen-
tation rules and guidelines. The TULIPP project will publish a reference platform
handbook, which allows developers to easily follow and apply the implementation
rules to find an optimal solution for their image processing application. Thus, TULIPP-
compliant custom platforms and applications can be designed at reduced develop-
ment time and costs.

10.2 The TuLIPP Use Cases

The development of the TULIPP reference platform as well as the TULIPP reference
platform handbook are use case driven. The three use-case scenarios feature applica-
tions for medical imaging, for automotive systems and for UAVs. The applications
cover different scenarios, yet the requirements for the embedded systems as such are
similar. All three use cases have to operate their image processing applications with
high computational performance, low power consumption as well as reduced overall
system size and weight. In addition, these applications have to comply with short
deterministic latencies, which requires to process images within real-time constraints.
Using these three use-case scenarios, the developments of the project, namely the
hardware platform, the real-time operating system, and the productivity-enhancing
utilities, can be evaluated at the best to provide optimal implementation rules and
guidelines for the TULIPP reference platform handbook.

10.2.1 Medical X-Ray Imaging

In medical imaging, mobile equipment is expected to replace high-end infrastructure
devices. Modern-day surgery requires that the surgeon has precise control of their
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movements and at times is able to see the path that blood flows through veins and
arteries. Complex imaging systems have to be used to achieve this.

Dedicated to X-ray instruments, the work of the TULIPP project is highly relevant to
a significant part of the market share, in particular through its Mobile C-Arm use case,
which is a perfect example of a medical system that improves surgical efficiency. In
real time, during an operation, this device displays a view of the inside of a patient’s
body, allowing the surgeon to make small incisions rather than larger cuts and to
target the region with greater accuracy. This leads to faster recovery times and lower
risks of hospital-acquired infection. Current X-ray sensors are able to provide live
images and video in real time. The drawback of this is the radiation dose: 30 times
what we receive from our natural surroundings each day. This radiation is received
not only by the patient but also by the medical staff, week in, week out.

While the X-ray sensor is very sensitive, lowering the emission dose increases
the level of noise on the pictures, making it unreadable. This can be corrected with
proper processing.

From a regulatory point of view, the radiation that the patient is exposed to must
have a specific purpose. Thus, each photon that passes through the patient and is
received by the sensor must be delivered to the practitioner; no frame should ever be
lost. This brings about the need to manage side by side strong real-time constraints
and high-performance computing.

The medical use case of the TULIPP project deals with this problem in real-time
X-ray image processing. The goal is to reduce the radiation dose to much safer
levels while keeping the image quality and the required latency and rate. The image
processing is done by an embedded system within a mobile device called ‘C-arm’
because of its ‘C’ shape. The X-ray source is located at one end of the C and the
sensor at the other end. This shape allows to have the patient in the middle and to
take images of any of its body parts through any angle and direction. The C-arm
is used during surgery and delivers an X-ray video stream in real time. The chosen
algorithms reduce noise from the sensors and enhance the image in order to provide
enough details to the surgeon. The algorithms require high-performance processing.

In the TULIPP project, our aim is to try to reduce the level of radiation by 75%. As
a result of this, more powerful image processing will be required in order to still be
able to see small details in the human body that are crucial during surgery. Since most
operating theatres are confined environments crowded with staff and equipment, the
device needs to be small and mobile. A system that integrates the processing close
to the sensor is ideal to help reduce extraneous wires and improves the mobility of
the equipment. The system needs to be compact but also has a low power draw since
heat and other RF emissions could disturb the sensors and eventually actually add
more noise to the signal. When we add up the hard real-time constraints to which
the system must comply due to part of regulatory constraints regarding devices used
in medical environments, this combination of requirements makes this use case a
challenge to design and develop a matching solution (Fig. 10.1).
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Fig. 10.1 Digital radiography

10.2.2 Advanced Driver Assistance

In the automotive domain, more electronic devices are going to be integrated into
cars in the future. One of the most promising segments for embedded vision systems
are the advanced driver assistance systems (ADAS). A steep growth is expected
for the next five to ten years. Here, the automotive industry puts a strong focus
on driving safety and pedestrian safety with vision-based systems as one of the
enablers for many new and innovative solutions. This includes both passive and
active safety systems. The most interesting fields of application for embedded vision
systems include vehicle, pedestrian and object detection, traffic sign recognition,
lane detection, night vision, surround view and driver monitoring. Data from optical
sensors is often combined with data from other sensors to either guide or assist the
driver, or to take control of the vehicle by automatic braking, automatic lane keeping,
park assist, etc. These applications will over the years be refined and enhanced,
resulting in fully autonomous driving solutions some 10years from now.

The automotive use case of the TULIPP project is focused on pedestrian detection.
The purpose of pedestrian detection algorithms is to recognize humans in an image
collected by an optical sensor. Detected pedestrians can then be used to trigger further
processing, e.g. automated braking. In TULIPP, the implemented algorithm performs
the pedestrian detection by feeding a set of trained classifiers various processed forms
of an input image.

ADAS vision systems require real-time, low-latency processing, at high to very
high computational load. They need to be robust and reliable, and will often be
treated as safety critical systems. The TULIPP project addresses all these questions.
By offering a toolset and standardization, it will help the designers to focus on the
image processing application rather than platform details. The TULIPP ADAS use
case shows how a typical automotive vision application, pedestrian detection, can
be facilitated by the TULIPP platform and how characteristics like low power, high
performance and robustness are natively supported (Fig. 10.2).
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Fig. 10.2 ADAS object recognition

10.2.3 Autonomous UAVs

In the domain of unmanned aerial vehicles (UAVs), onboard image processing in real
time is a key technology for autonomous operation [3]. Small UAVs have entered a
large range of applications as their underlying technology has improved. This also
allowed for the exploration of a new and large range of applications. Today, appli-
cations for surveillance, search and rescue, video production, logistics and research
are just a small subset of possible scenarios [4]. With the growing amount of UAVs,
however, the number of crashes and problems with controlled operation is increasing.
Problems can be caused by several sources, e.g. operator error as well as mechanical
or electrical malfunction. In a worst-case scenario, this error not only involves the
UAV itself but also humans, goods or infrastructure [5]. Therefore, UAVs need more
intelligent control and interaction systems, such as automatic collision avoidance or
more robust pose estimation, to minimize risks of failure.

The goal of the UAV use case in TULIPP is to estimate depth images from a
stereo camera set-up. Orientated in the direction of flight, the depth images are used
to detect objects in the path of the UAV. In further stages, detected object is then
used for collision avoidance. This approach creates a more autonomous and more
intelligent solution. The problem is that more intelligence needs more computing
power, which is very limited especially on small UAVs. Yet, image processing has
to be onboard in real time, also considering weight and power constraints.

The TULIPP solution aims to fill this processing gap by using its good performance-
to-weight and power consumption-to-weight figures. We aim to use computer vision
algorithms such as stereo and depth estimation to detect obstacles and evaluate the
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Fig. 10.3 Autonomous unmanned aerial vehicle

surroundings in order to make the UAV more intelligent. For this purpose, we attach
the TULIPP reference platform with a stereo camera set-up orientated in direction of
flight to a UAV. Our goal is to use stereo algorithms to automatically detect obstacles
in real time that are within dangerous vicinity in front of the UAV and to avoid
a collision. Therefore, we will provide a processing chain which is quite common
to any stereo vision-based application. The processing chain contains stereo image
acquisition, preprocessing, like image rectification, a depth estimation algorithm
based on semi-global matching, similar to [6], an obstacle avoidance algorithm as
well as an interface to an external system (UAV) (Fig. 10.3).

These three use cases represent an ideal combination of applications for the TULIPP
project. Each use case requires embedded high-performance low-power image pro-
cessing, but the constraints differ for each use-case scenario. Striving for optimization
for each use case, the developments of the TULIPP project will then provide a flexible
and extensible solution including rules and definitions for the hardware platform, the
operating system and the utilities used to design, develop and deploy an embedded
high-performance low-power image processing application.
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10.3 The TULIPP Reference Platform Instance

The TULIPP project is developing and will provide a reference platform. The ref-
erence platform is presented in the context of the starter kit, a conceptual package
consisting of a platform instance, project applications and the reference platform
handbook. The aim of the starter kit is to provide engineers with a generic evaluation
platform that serves as a base for productively developing low-power image process-
ing applications. The platform instance is a physical processing system consisting
of hardware, Operating System (OS), and application development tools. This plat-
form instance demonstrates the results of the project using the applications of the
presented use cases.

The reference platform handbook is a set of guidelines for low-power image pro-
cessing embedded systems. We use guidelines as shorthand for the reference plat-
form handbook. Guidelines recommend application implementation methods sup-
ported by the platform instance. A guideline is a goal-oriented, expert-formulated
encapsulation of advice and recommended implementation methods for low-power
image processing. A vendor platform that enables guidelines by providing suitable
implementation methods is called an instance. An instance is fully compliant if it
provides recommended implementation methods for all the guidelines that it sup-
ports. We envisage that compliance with guidelines will be judged and certified by
an independent body identified by the ecosystem of stakeholders.

The reference platform is used to define implementation rules and interfaces to
tackle power consumption for high and efficient computing performance demands
for image processing applications. The main objective is to provide a new approach
to find an optimal solution for a vision-based system. The complex task of designing
and evaluating different, interleaving and evolving hardware and software compo-
nents is then eased so that the overall cost of image processing devices will be reduced
drastically. The universal and well-defined interfaces of the reference platform offer
the possibility to include new generations of hardware devices and software compo-
nents without significant overheads and costs for redesigning the system. It allows
developers to efficiently design more embedded and less power consuming image
processing platforms.

The TULIPP image processing solution aims for scalable high performance and
mechanical flexibility to be able to comply with heat dissipation and size constraints,
low cost and low power consumption. The inherent idea of customization guides the
activities of TULIPP to set up guidelines and definitions on how to use and com-
bine heterogeneous technology at its best. Thus, an optimal solution—in terms of
performance, energy efficiency and development costs—for a customized image pro-
cessing system can be found. Furthermore, TULIPP takes into consideration that the
reference platform will evolve at the same pace as modern technology. This ensures
that developers can benefit from the improvements future technologies and devices
offer but it is a challenge at the same time because the reference platform has to
assimilate new technology as it comes up.
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Instead of developing a generic platform solution that should fit all the appli-
cations, TULIPP proposes to focus its efforts on developing a guide for a reference
platform that helps the designer in making choices for the components and inter-
faces. This reference platform is a versatile ideal platform described through a set of
guidelines. By following the guidelines, one can implement features to tackle power
consumption while delivering high and efficient computing performance for image
processing applications under real-time constraints on processing rate and laten-
cies. This solution is much more beneficial and future-proof including all aspects
of the development of an image processing platform. TULIPP will build the refer-
ence platform through industrial consensus dedicated to low-power real-time image
processing applications (Fig. 10.4).

The project will concentrate on interfaces between the components of the platform
(hardware, utilities, operating system and middleware libraries) as well as design
and implementation processes. Following the guidelines, a developer will be able to
produce a compliant platform and benefit from the technological advances generated
by the project. In addition, vendors will be able to produce a compliant part and plug
it into an existing platform. Thus, a TULIPP-compliant platform instance benefits
both to the developers and the vendors. To achieve this goal, the TULIPP project
will set up and work closely with an ecosystem formed with platform-part providers
(e.g. chip, processing board, operating system, processing libraries, toolchain, etc.)
and application developers. This allows incorporating valuable feedback during the
project lifetime.
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10.3.1 Turirp Hardware Architecture

Current designs in vision-based embedded solutions are built on single-core CPUs
or shared memory architectures. Homogeneous approaches to modern embedded
image processing systems are easy to programme but are not an optimal solution
regarding energy efficiency and processing performance. High-end vision systems
in the automotive industry feature heterogeneous architectures. The drawback is that
each iteration during design time and each new generation of technology requires a
huge implementation effort.

TuLIPP will focus its work on heterogeneous systems in image processing appli-
cations. Different processing elements will be combined in a hardware architecture,
where each processing element is best suited for certain parts of an image processing
application. As an example, a small 32-bit CPU can be used for controlling in- and
outputs. The processing of images can then be executed on multiple 64-bit CPUs
with additional acceleration by FPGAs or embedded GPUs.

The TULIPP reference platform provides a template for heterogeneous computing
architectures and systems. Modern SoCs demonstrate the potential of heterogeneous
systems. The NVIDIA Tegra-K1 [7] provides high performance by combining an
ARM processor with a GPGPU. Similarly, Xilinx puts great efforts on the Zynq
devices. Here, an ARM processor is combined with an FPGA. Xilinx UltraScale+
MPSoCs takes one step further and combines 64-bit and 32-bit ARM architectures
together with dedicated real-time cores and an FPGA [8]. The goal of the TULIPP
reference platform is not only to optimally utilize a single SoC. Moreover, the project
aims to connect different SoCs. Different parts of an image processing application
can then be run on the best-suited computing architecture. An adaptive system allows
running an application energy efficient yet high performant. The hardware platform
will be fine-tuned and configured for each application. Therefore, TULIPP defines how
to select SoCs suitable to build a TULIPP platform instance and how to efficiently
interconnect several SoCs. Switch-off mechanisms, adjustable operating frequencies
and dynamic partial reconfiguration (DPR) [9] further reduce the cost of unused
system resources during runtime.

As of the time of writing, TULIPP uses Xilinx Zynq SoCs to thoroughly test
different combinations of hardware and interfaces on- and off-chip. The inherent
heterogeneity of these devices is used to derive definitions, implementation rules
and guidelines for the TULIPP reference platform and the TULIPP reference platform
handbook. The TULIPP hardware architecture uses the PC/104 form factor. This
form factor is already supported by many vendors, which are committed to the
ongoing development of this specification [10]. It is mature, modern, open standard
and expandable but also capable for stand-alone applications. These features are
perfectly suited for a scalable and heterogeneous TULIPP hardware platform.
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10.3.2 Turirp Operating System and Low-Level Libraries

Today, there is a significant gap between research and commercial implementa-
tion of an RTOS. Research results feature scheduling algorithms, resource sharing
algorithms and inter-process communication (IPC) protocols. Yet these innovations
are rarely incorporated in commercial systems. Existing RTOS are mainly targeted
towards single-core designs, and multicore approaches focus on homogeneous SMP
architectures. In addition, the need for energy efficiency is rarely supported. This
includes, for example, power-aware scheduling at the kernel level [11]. As a result,
system lifetime and reliability are reduced [12].

In TULIPP, the design of the operating system and low-level libraries is targeted
towards low power consumption and image processing. The RTOS kernel supports
heterogeneous architectures and power-aware features. Communication and synchro-
nization mechanisms are implemented so that the operating system correctly operates
on the instantiated processing elements of the hardware platform. The footprint—i.e.
the binary size—of the RTOS is kept small for hardware components only embed-
ding a small local memory. Frequent accesses to bigger memories like DDR are not
suitable for running image processing applications in real time and consume more
energy. The TULIPP reference platform provides primitives so that components can
be integrated or wrapped in the low-level library available for the programmer. In
addition, standard APIs will be modified and extended to comply with the require-
ments of low power consumption and high-performance image processing. Thus,
extensions and modified standards are proposed as a pre-norm.

The RTOS in TULIPP is developed to efficiently handle heterogeneous hardware
processing resources of multicore CPUs and FPGAs with a strong focus on finding
the right balance between low power footprint and high computing performance.

The RTOS solution proposed by the TULIPP project is a new master—slave micro-
kernel architecture specifically designed for heterogeneous multicores. It features
a small footprint, low power consumption and good scalability. This is a combina-
tion of several features. Power-aware schedulers—i.e. extended earliest deadline first
(EDF) instead of rate monotonic (RM) schedulers [13]—reduce the overall power
consumption of applications. Moreover, it has been shown in the real-time litera-
ture that schedulers based on a parallel task model are well suited to be extended
to power-aware scheduler [14]. Therefore, the TULIPP platform includes an RTOS
capable of scheduling parallel real-time tasks (software or hardware) associated with
the right runtime libraries allowing to easily design parallel workload to be run on
the different heterogeneous components of the target platform. This, combined with
optimizations provided by the offline utilities of TULIPP presented in the next section
will result in an image processing embedded system suited to the user requirements
in terms of power consumption and computing performance.

The hard real-time scheduling of hardware/software tasks is combined with vir-
tual memory management to isolate processes and efficient IPC mechanisms to allow
these processes to communicate. Developers can then use the reliable real-time guar-
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antees and easy programmability of the provided RTOS for optimized low-power
image processing applications.

The TULIPP real-time operating system is designed by HIPPEROS and based on
its family of RTOSes [15, 16]. It supports standard tools to interface with hardware
(bootloaders, debuggers, etc.), and low-level libraries shipped with the operating sys-
tem support APIs validated for low-power embedded image processing applications
(POSIX, OpenCV, OpenMP, etc.) [17]. The operating system interfaces are devel-
oped to be optimally integrated with the TULIPP hardware platform and the supporting
development toolchain and utilities. Additionally, the RTOS environment is adapted
to suit the modern advantages of the heterogeneous platforms [18]. For example, for
heterogeneous platforms as the Zynq device, the HIPPEROS RTOS provides APIs
to partially reconfigure at runtime what is running in the FPGA, enabling the Xil-
inx dynamic partial reconfiguration feature and exposing it to the image processing
application developer (the user of the TULIPP platform).

Thus, the main advantage of the TULIPP RTOS solution is its efficiency for het-
erogeneous parallelism and power optimization.

10.3.3 TuLiep Toolchain

The current state of the art in development tools for heterogeneous image processing
systems requires a lot of interaction and experience with several different vendor-
specific tools. Each component is accompanied by its own complex tools. The devel-
oper has to spend a significant amount of time to master these tools. This results in low
productivity and a reduced innovation rate. Extensive reviews of such heterogeneous
system development tools exist [9, 19, 20]. A TULIPP-compliant platform can feature
hardware components from several different vendors. In general, each component is
supplied with its own specific toolchain and Integrated Development Environment
(IDE). To efficiently develop low-power, high- performance applications on TULIPP
hardware platforms, the programmer needs to gain expertise in several tools. This
inhibits productivity, as such expertise takes a long time to develop. In addition, lack
of knowledge or expertise in a particular vendor—device or tool—may also prevent
developers from selecting hardware components, which would be best suited for the
power and performance requirements of a specific image processing application.
TULIPP proposes a solution using toolchain utilities that allow developers to use
multivendor tools more efficiently and productively. The focus of the utilities is put on
an improved system set-up, its analysis and optimization. This includes mapping an
application optimally onto a heterogeneous, TULIPP-compliant platform. The set of
utilities is called STHEM—supporting utilities for heterogeneous embedded image
processing. STHEM wraps around, extends and connects existing vendor tools to
present a seamless mapping and performance/energy analysis interface to program-
mers. Developers are able to map parts of an application onto suitable components
using STHEM interfaces. Primitives and library routines can be used to handle con-
trol and communication of the components. Problem areas of the application can be
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Fig. 10.5 High-level overview of the iterative workflow using STHEM

identified with STHEM’s utilities for performance and energy consumption analysis.
Furthermore, the utilities also identify optimization opportunities. Thus, the devel-
oper is guided towards an energy-efficient and high-performant image processing
application and platform.

An overview of the workflow is given in Fig. 10.5. STHEM provides efficient
usability of expert-written mechanisms for the improvement of an application. The
workflow is iterated until desired performance and energy profile is reached. In the
first stage of the workflow, programmers write application code. The optimizations
identified in the previous iteration are also applied in this first stage. Programmers
are also assisted with platform-specific primitives and library routines that abstract
away commonly used domain-specific functionality. In the second stage, developers
are supported in the mapping of an application to components using easy-to-use,
expert-written mapping directives. The third stage is used for platform configura-
tion, application execution and profiling. Analysis of the execution and profiling
is provided in the fourth stage. Visualizations are used to highlight profiling data
and problem areas [21]. In addition, STHEM suggests optimization strategies to
programmers and offers to automatically explore the design space.

STHEM is built as an Eclipse 4 RCP plugin to facilitate an integrated workflow
with popular vendor tools that integrate into the Eclipse IDE [22-24]. The first imple-
mentation of STHEM is designed for Xilinx SDSoC [22]. Thus, all the components of
the TULIPP reference platform—heterogeneous hardware platform, multicore RTOS
and supporting utilities—can be evaluated and tailored towards optimal energy effi-
ciency and high computing performance for image processing applications.

With the three components described above—hardware architecture, operating
system and toolchain—the TULIPP project aims to provide rules and definitions for
a reference hardware platform. Thus, the TULIPP project does not only provide an
extensible set of components for embedded high-performance low-power image pro-
cessing applications. Moreover, the insights and knowledge gained by developing
these components is comprehensively written down in the TULIPP reference platform
handbook.
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10.4 The TuLIPP Reference Platform Handbook

The TULIPP reference platform handbook provides guidelines on developing and opti-
mizing a low-power high-performance image processing application and embedded
vision system. As described in the previous chapters, it is a complex task to develop
an image processing system that complies with the constraints of embedded sys-
tems and the demand for low power consumption and high computing performance.
Embedded vision systems feature a complex combination of different design steps,
including component selection and platform set-up, application and algorithm opti-
mization as well as application mapping.

The guidelines provided by the TULIPP reference handbook support the devel-
oper by managing the complexity of designing modern low-power image processing
embedded systems. Therefore, guidelines are derived from the expert knowledge
gained during the development of the TULIPP reference platform. This knowledge is
split into advices and recommended implementation methods. Advices support the
developer on what to do so that an image processing application and platform can
be optimized. The recommended implementation methods describe in detail how to
achieve the suggested optimizations.

The guidelines of the handbook consider all the components of the TULIPP ref-
erence platform. Developers are supported in the selection of TULIPP-compliant
hardware components and operating system settings best suited for their application.
In addition, guidelines are formulated on how to rewrite the application and how to
use APIs, libraries and pragmas achieving a more efficient image processing appli-
cation. The guidelines always put the focus on low power consumption, high and
heterogeneous computing performance and real-time image processing.

As along-term goal, the TULIPP handbook aims to improve productivity as well as
influence new standards for heterogeneous embedded vision systems operating under
real-time constraints with low power consumption and high computing performance.
The expert insights of the guidelines then not only support developers by optimizing
their application, but also vendors by providing TULIPP-compliant hardware and
software. For developers, this has the potential to significantly improve productivity.
Costly mistakes are avoided and vast design and implementation spaces are pruned.
Vendors are encouraged to strive for compliance by providing suitable hardware and
software. Thus, the efforts of the TULIPP project pave the way for future standards
in embedded low-power image processing systems.

10.5 Future Goals and Outlook

The main objective of the TULIPP project is to develop a reference platform for high-
performance and energy-efficient embedded systems for image processing applica-
tions. In addition to this reference platform, TULIPP is going to support developers
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with a reference platform handbook. The handbook provides guidelines on develop-
ing and optimizing low-power high-performance embedded vision systems.

To achieve its goals, the TULIPP project develops and provides a starter kit. This
Starter Kit is used to demonstrate the potential of the projects’ approaches to the
design, development and implementation of embedded vision systems. The TULIPP
starter kit allows the project to track its efforts and demonstrate its use cases. Further-
more, the kit also allows developers to design high-performant yet low-power image
processing platforms and applications. The starter kit will feature a first version of
the TULIPP reference platform and handbook. The hardware component consists of
a PC/104 board with a small system-on-module (SoM). Here, the SoM features a
Xilinx Zynq device for heterogeneous computing performance. The toolchain com-
ponent consists of a collection of application analysis utilities referred to as support
utilities for heterogeneous embedded image processing (STHEM). STHEM will aug-
ment existing vendor toolchains by automating analysis procedures and supporting
more efficient application design. This reduces time-to-market, improves developer
productivity and system quality by making it easier and faster to arrive at an imple-
mentation that meets the requirements. The hardware platform and STHEM will be
completed with the HIPPEROS real-time operating system and its low-level libraries,
allowing to design and run highly efficient embedded vision-based applications and
platforms.

The reference platform and handbook cover all the aspects of designing embedded
systems for vision-based applications: from computing hardware, operating system
and low-level libraries to programming toolchain and utilities. The reference platform
also defines a set of interfaces between basic components and implementation rules
to facilitate prospective system design. The implementation rules and guidelines
of the reference platform handbook support developers designing embedded image
processing platforms. This significantly contributes to a reduction of time-to-market
and development costs. The TULIPP project is going to leverage the utilization of
heterogeneous embedded computing platforms for image processing applications.
Thus, the TULIPP project aims to pave the way for standards for embedded high-
performance low-power image processing in industrial applications.

The TULIPP project establishes a valuable advisory board and ecosystem. The advi-
sory board consists of leading experts from industry and academia with a strong focus
on image processing applications and platforms targeted towards embedded systems.
Thus, valuable feedback is used during the project to further leverage and promote
its developments. Incorporating high-quality feedback and utilizing its developments
and guidelines the TULIPP project puts great efforts into industrial usage and standard-
ization of ubiquitous low-power embedded systems for image processing platforms.
The state and progress of the project will be available to the public at the website of
the TULIPP project [1].
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Chapter 11 ®)
Energy-Efficient Heterogeneous i

Computing at exaSCALE—ECOSCALE

Konstantinos Georgopoulos, Iakovos Mavroidis, Luciano Lavagno,
Ioannis Papaefstathiou and Konstantin Bakanov

11.1 Introduction

In order to sustain the ever-increasing demand for storing, transferring and processing
data, HPC servers need to significantly improve their efficiency. Scaling the number
of cores alone is no longer a feasible solution due to the increasing utility costs and
power consumption limitations. Furthermore, while current HPC systems can offer
petaflop performance, their architecture limits their capabilities in terms of scalability
and energy consumption. Extrapolating from top modern HPC systems, such as
China’s Tianhe-2 Supercomputer, we estimate that sustaining exaflop performance
requires a highly significant 1 GW of power. Similar, albeit smaller, figures are
obtained by extrapolating even the best system of the Green 500 list as an initial
reference.

Apart from improving transistor and integration technology, important refine-
ments in HPC application development and HPC architecture design are also needed.
The ECOSCALE project [21] meets these challenges with a novel and holistic
approach for exascale computing, combining a hybrid many-core+OpenCL program-
ming environment with a hierarchical architecture, an intelligent runtime system and
middleware and hardware support for sharing distributed and reconfigurable accel-
erators.

This paper is separated into a number of different sections and subsections so that
all important aspects of the ECOSCALE solution can be addressed sufficiently, such
as system architecture, runtime and programming model.
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11.2 HPC Application Characteristics

The ECOSCALE architecture has been envisaged such that it suits the characteristics
and trends of future HPC applications so that they efficiently scale to exaflop perfor-
mance. In our attempt to predict future HPC applications, we envision that they will
have the following fundamental characteristics:

1. Massive parallelism: Applications can be partitioned into many parallel tasks or
threads that can run in parallel. A 1000x increase in today’s concurrency will be
necessary to achieve exascale throughput [7].

2. Data locality: HPC applications should be characterised by spatial and temporal
locality in order to scale. The data accessed by an HPC application will be parti-
tioned in memory sub-domains in such way that memory transfers between these
sub-domains are infrequent and efficient.

Subsequently, partitioning into sub-domains will dictate the mapping of tasks to cores
and accelerators, so that each task executes on a device that is directly attached to the
data that the task accesses. Instead of a flat partitioning of the application domain,
we foresee that future large-scale HPC applications will perform hierarchical and
topological partitioning [16], such as a high-radix Dragonfly or Slim fly topology,
of their data into domains. This shall reduce communication distance and latency.
A leaf node in this partitioning would correspond to a data domain that fits in the
local memory of a single processor—accelerator bundle, which we have coined as
Worker. Moving up one level in the hierarchy, domains would map to data that fits in
multi-worker chips, formally referred to as Compute Node(s). Further up one level,
domains would map to data that fit in multi-chip nodes (multi-Compute Nodes), and
further up in multi-node chassis and cabinets.

Starting from the leaves, each level up the tree would add one hop in the maxi-
mum communication distance between any two processing units. Existing petascale
systems have a maximum distance of five hops and exascale systems will push this
distance to six or seven, and even possibly longer, hops, with a corresponding number
of levels in the hierarchical partitioning. This hierarchical partitioning can signifi-
cantly reduce the communication overhead and mapping algorithm complexity to
achieve scalability [1, 4].

The programming model used by the HPC applications should also be considered
in the architectural decisions, as well as in the specifications of the runtime system, in
order to improve HPC efficiency. Although MPI has been the most popular program-
ming model for developing parallel scientific applications, the PGAS programming
model is an attractive alternative for designing applications with irregular communi-
cation patterns. It is widely believed that a hybrid flexible MPI+PGAS programming
model is an efficient choice for many scientific computing problems and for achieving
exascale computing [9]. Figure 11.1 illustrates the proposed ECOSCALE partition-
ing of future HPC applications, which uses such a hybrid many-core MPI+PGAS
programming model. PGAS is used for efficient intra-partition communication where
the number of cores is limited by the hop-costs of a specific system instantiation.
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Fig. 11.1 Example hierarchical partitioning (tasks, memory, communication) of an HPC applica-
tion

Since PGAS and related task scheduling algorithms have important scaling problems,
MPI can also be used for efficient inter-PGAS communication.

Exascale performance and energy efficiency are also going to be supported by the
extensive use of reconfigurable accelerator technology through the implementation
of a novel architecture referred to as UNILOGIC (Unified Logic). This is as an
extension to the UNIMEM architecture proposed and developed within the context of
the EUROSERVER project [8]. Specifically, UNIMEM provides a shared partitioned
global address space while UNILOGIC extends this concept by providing shared
partitioned reconfigurable resources within UNIMEM.

The UNIMEM architecture gives the user the option to move tasks and processes
close to data instead of moving data around [8] and, thus, significantly reduces data
traffic and the associated energy consumption and communication latency. From
the point of view of a processor in a multi-node machine, a memory page can be
cacheable at the local coherent node or at a remote coherent node, but not at both.
This is the basis of the UNIMEM consistency model, which eliminates global-scope
cache coherence protocols, thereby, helping to achieve scalable solutions. Progressive
address translation [11] can be further applied on top of UNIMEM in order to provide
inter-processor communication.

UNILOGIC enriches UNIMEM by introducing the ability to easily move the
acceleration engine to local hardware, for instance, through dynamic partial recon-
figuration [12]. The proposed UNILOGIC+UNIMEM architecture partitions the
design into several Compute nodes that communicate through a hierarchical com-
munication infrastructure, similar to the one shown in Fig.11.1. These Compute
nodes correspond to the partitions of the HPC application. Each Compute node is an
entire subsystem including processing units, memory and storage. Within a PGAS
domain, consisting of several Workers, the proposed architecture offers (1) a shared
global address space that can be partitioned for locality and (2) shared reconfig-
urable resources that can also remotely access cached data via regular load and store
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instructions, without using any global cache coherency mechanism to keep a local
cache coherent.

11.3 ECOSCALE Approach

ECOSCALE’s purpose is to provide a novel methodology and architecture that
automatically executes HPC applications onto an HPC platform, which, itself,
supports thousands or millions of reconfigurable hardware blocks, while taking
into account the projected trends and characteristics of HPC applications. Within
this context, ECOSCALE aims at introducing Field-Programmable Gate Array
(FPGA)-based acceleration as an integral part of the processing nodes within the
UNIMEM+UNILOGIC system architecture and adapting them to work in an HPC
environment. Thus, its novel framework provides the locality and scalability model
for FPGA-based acceleration from the ground up. In order to efficiently do so, we
follow a holistic approach providing solutions for all aspects of an HPC environment,
ranging from architecture and runtime management and optimisation, to High-Level
Synthesis (HLS) and hardware virtualization.

The proposed hardware (HW) design consists of a stack of three interdependent
HW abstraction layers, as shown in Fig.11.2. At the bottom layer, the proposed
hardware architecture provides the basic hardware components and functionality in
order to efficiently use the available HW resources, for instance, CPU, memory and
reconfigurable hardware.

In the middle layer, a middleware provides the primitives to reconfigure hardware
blocks at runtime, while an HLS tool provides the synthesised application tasks to the
middleware. Finally, in the top layer, a runtime system schedules tasks inside a PGAS
partition, provides the MPI primitives for communication between PGAS partitions
and decides at runtime which functions of the accelerated application should be
implemented and executed in reconfigurable hardware as well as where data should
be placed for locality.

Fig. 11.2 The ECOSCALE
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11.3.1 The ECOSCALE Architecture

The system architecture uses CPUs, memory and reconfigurable cores (often
described as accelerators) in a highly parallel manner. Driven by the characteris-
tics and trends of future HPC applications and following the high-radix partitioning
of an HPC application, the proposed UNILOGIC+UNIMEM architecture logically
partitions hierarchically the hardware resources, such as CPUs and reconfigurable
hardware into several interconnected Compute Nodes, corresponding to the PGAS
partitions of the application, which are further partitioned into several Workers,
depending on the physical structure of the system. Thus, one or more Compute
Nodes create an entire and independent PGAS subsystem including several Workers
and offer:

1. UNIMEM: a shared space that allows Workers to communicate via regular loads
and stores without global cache coherence and

2. UNILOGIC: shared partitioned reconfigurable resources that share the UNIMEM
space with software tasks.

Other existing architectures either require a global cache coherent mechanism, which
simply cannot scale, or support only Direct Memory Access (DMA) operations,
which are not efficient for small data transfers such as messages to synchronise
remote threads or to configure a remote peripheral [17]. The UNIMEM architecture
allows moving tasks and processes closer to data instead of moving data around [12].

The proposed HPC architecture consists of several Workers communicating
through a multilayer interconnection, Fig. 11.3. The actual number of Workers inside
a Compute Node depends on the integration capabilities of future technologies. Each
Worker is an independent computing unit that can execute, fork and join tasks or
threads of an HPC application in parallel with other Workers.

It includes a CPU, a reconfigurable block and an off-chip DRAM memory. The
communication and synchronisation between Workers is performed through a mul-
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Fig. 11.3 The ECOSCALE compute node hardware architecture



204 K. Georgopoulos et al.

tilayer interconnection, which allows load and store commands, DMA operations,
interrupts and synchronisation between Workers within a Compute Node. The Com-
pute Nodes are PGAS subsystems that correspond to the application’s PGAS-based
partitions shown in Fig. 11.1. Matching the application’s logical topology of Fig. 11.1,
the Compute Nodes are interconnected through an MPI-based multilayer intercon-
nection.

The communication overhead between a CPU and a hardware accelerator, i.e. the
reconfigurable block inside a Worker, is one of the most crucial challenges. A few
years ago only explicit memory transfers between the host memory and the accel-
erator’s memory were supported, like in a GP-GPU. Recent technological advances
allow the integration of the host CPU and hardware accelerators on the same chip,
and thus, hardware accelerators can now access the host memory directly. Such a
typical ARM-based system [5] is depicted on the left of Fig. 11.4. However, there
are still important limitations that we will tackle in this project.

Subsequently, in the architecture of Fig. 11.4, the ARM Cache Coherent Intercon-
nect supports two types of coherent ports in order to provide hardware coherency in
the system: (1) ACE ports, which can be used by masters containing caches, such
as a processor, and (2) ACE-lite ports, which can be used by masters that do not
have hardware coherent caches. ACE-lite ports are traditionally used for hardware
accelerators such as GPUs and FPGAs, as shown in the figure.

Furthermore, Fig.11.4 includes the block diagram of a single ECOSCALE
Worker. This architecture extends the one displayed on the left in the following
manner. Accelerator blocks act, according to UNIMEM terminology, as a Unit of
Compute, and hence, they can interface directly with any other UNIMEM Unit of
Compute where each unit caches its local data coherently. Similarly, each acceler-
ator can cache its local data and provide coherent access from remote UNIMEM
units. If a single accelerator block needs to span across multiple FPGA local memo-
ries, the FPGA units can then provide their own coherence schemes independent of
UNIMEM.

Typical ARM-based architecture ECOSC.ﬁ.lE Worker
DMA
ARM DRAM
DroCessor rocesso SMMU Controller
ACE| ACE lite ACE |ACE lite ]Mem L1
DEEIE LO Interconnect (Coherent) 'ﬁlnter.mnnw
nterconne | ACElite
Mem ACE lite Processor — (ACE Physical
DRAM Reconf, Interface Address Space
Controller | Acceler Multiple Virtual ] e Virtual
ator Channels —»| Address Space
Virtualization Reconfigurable
Context Switching \ Accelerator
Single shared
. Channel
Reconfigurable block Reconfigurable block

Fig. 11.4 Conventional ARM-based system versus block diagram of ECOSCALE worker
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The reconfigurable resources are typically configured to use physical addresses in
order to access shared variables. Since only the OS (or the hypervisor in virtualized
systems) has access to the physical address space, the intervention of the OS (or the
hypervisor) is unavoidable. A dual-stage I/O MMU, such as the ARM SMMU shown
in Fig. 11.4, can resolve this problem by translating virtual addresses to physical
addresses in hardware. Hence, by using an /O MMU, the proposed architecture will
allow user-level access to the reconfigurable accelerators.

Furthermore, virtualisation and context switching enables multiple tasks or
threads of an HPC application to share a single CPU in order to maximise the util-
isation of the CPU resources. Similarly, our architecture will support coarse-grain
time-sharing of the reconfigurable resources through partial runtime reconfiguration.
Moreover, it will support fine-grain sharing of those FPGA resources, where a func-
tion implemented in hardware can be called by different tasks or threads of an HPC
application in parallel, through the Virtualisation block of Fig. 11.4. The Virtualisa-
tion block and the HLS tool provide a mechanism to execute multiple function calls,
from different virtual machines, in a fully pipelined fashion.

Sharing of the limited reconfigurable resources between Workers is very impor-
tant. Thus, within a Compute Node, any Worker can access any reconfigurable block,
even remote blocks that belong to other Workers, through the multilayer intercon-
nect of Fig. 11.3. Moreover, the L0 Interconnect in this example system provides an
external ACE-lite port (connection to L1 interconnect in Fig. 11.4) that can be used
by remote reconfigurable blocks to make coherent accesses. However, since this is
not an ACE port, the remote Reconfigurable block should disable its data cache and
would not be as efficient as a local one.

The inter-Worker communication as implemented via UNIMEM is shown in
Fig. 11.5. With UNIMEM, every independent ECOSCALE Worker, including those
of different Compute Nodes, can potentially have access to the memory physically
located anywhere in the system, i.e. the memory that comes as part of a Worker. Not
only that, but a memory can be shared among local as well as remote requests, with
the latter case shown in Fig. 11.5.

In this particular instance, a remote Worker (Worker 0) is faced with increas-
ing storage demand and uses the memory of Worker 1 that happens to be sitting
idle through a PHY to Global and Global to PHY address translation process,
thereby, extending the capabilities of the system and avoiding limitations in available
memory. Naturally, the address translation process is what the system MMU in the
ECOSCALE architecture is responsible for performing.

Subsequently, a very similar concept is applied to the case of UNILOGIC and a
simple illustration is shown in Fig. 11.6. As mentioned, UNILOGIC offers remote
access to reconfigurable resources, i.e. the reconfigurable hardware of each Worker
can become available to any application that may require it provided that it is avail-
able. In the example of Fig.11.6, Worker O can access the programmable logic,
i.e. Reconfigurable Block, located at Worker 1 through the same process of PHY
to Global and Global to PHY address translation, while that particular block can
fetch the data required for processing from the memory (DRAM) of the initiator,
i.e. Worker 0. This, however, is one type of scenario that the ECOSCALE archi-
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tecture shall realise, others will also take place such as a single Reconfigurable
Block using data originating from multiple, instead of a single, memory sources
or multiple Reconfigurable Blocks using data from a single (or multiple) memory
source(s).
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11.3.2 Runtime System

The ECOSCALE runtime environment, shown in Fig. 11.7, extends current OpenCL
frameworks in three ways. First, by supporting a partitioned global address space
within and between ECOSCALE Workers and Compute nodes, via the introduction
of new data scoping and consistency abstractions in OpenCL. Second, by extending
the semantics and providing a scalable and efficient implementation of OpenCL data
transfers between partitions of the address space. This is in addition to data transfers
between devices, CPUs and reconfigurable subsystems, within the same address
space, by using direct loads and stores from and to remote shared memories. Third,
by allowing the programmer to specify functions that can be synthesised in hardware
and can be accelerated, on demand, at runtime, depending on the dynamic execution
conditions of the system. Furthermore, ECOSCALE implements new algorithms to
dynamically partition computation between CPU cores and hardware accelerators
on the ECOSCALE nodes.

ECOSCALE has also explored new methods and models for monitoring the exe-
cution time complexity and energy consumption of tasks on CPUs and reconfigurable
systems, as well as new algorithms for choosing on the fly the most appropriate device
to execute each function.

Specifically, input-dependent models are developed that capture the correlation
between input/output size, input/output data shape (when available), and data access
pattern in memory (model inputs) and execution time and power consumption (model
outputs) using one or more CPU cores or accelerator(s). The models are co-designed
with the application use cases of ECOSCALE. This effort entails three parts. First,
a training part to use the target applications with different realistic inputs, in order
to capture static and dynamic properties of the input and record the corresponding
execution time and power outputs.
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Fig. 11.7 Interaction and control flow between the three abstraction layers
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Second, a model building part explores models for predicting outputs from inputs.
For this, an array of regression, SVM and PCA techniques are used, building on
prior experience on models for predicting execution time and power for the purpose
of multidimensional programme adaptation [6]. Finally, actuation part deploys the
models with actual running applications, using hardware performance monitors and
function instrumentation to capture the static and dynamic properties of the unseen
input, and project execution time and power using the trained models with hardwired
parameters. This enables the runtime scheduler to judiciously and dynamically select
and distribute functions for hardware acceleration.

We also explore methods to minimise non-overlapped communication latency
within each ECOSCALE Compute node as well as across nodes in the same cluster.
Hence, one scheduler per worker is implemented, to manage the local reconfigurable
blocks and the execution of the accelerated functions.

Furthermore, whenever a function is called, a work and data distribution algorithm
in the runtime system (included in the Execution Engine of Fig. 11.7) decides whether
the function is to be executed in software or in hardware based on the local status
and the status of other Workers in the vicinity. To curb the overhead of monitoring
remote status, we implement local work queues per worker and infer the status
of remote workers via the status of the local queue, using techniques inspired by
Lazy Scheduling [18]. A history of the function calls as well as their execution
time is stored in a History file (Execution History block). Consequently, the runtime
scheduler/daemon reads periodically the system status and the History file in order
to decide at runtime what functions should be loaded on the reconfiguration block.

Moreover, there are two partitioning problems that the runtime has to manage.
First, the partitioning of data and second the partitioning of the computations. The
mechanism for data partitioning is quite straightforward and has been addressed
by the use of a library that allows performing remote memory allocations through
UNIMEM. Therefore, the job of the runtime is simply to track the current memory
allocations and executions and then to allocate the available memory according to
the allocation algorithm, which takes all of that into account.

Partitioning computations are more tricky as we have two types of accelerators at
our disposal on each Worker, i.e. four CPU cores and one UltraScale+FPGA. Hence,
due to their inherent distinctiveness, they are approached differently. CPUs behave
normally relative to OpenCL specifications. The work cycle of a typical accelerator
is this: the kernel source code is compiled into a binary dynamically and the binary is
then submitted for execution along with NDRange and workgroup sizes information.
The software driver manages kernel compilation and binary execution.

Hence, the ECOSCALE approach regarding CPUs is as follows. We use the
readily available SnuCL runtime, which allows accessing remote CPUs as if they are
available on a local host. This is achieved with a mechanism which tracks the load
of all the CPU accelerators across the compute node (i.e. cluster) including the work
pending in a queue for each device. In addition to that we store the characteristics of
previous executions.

Subsequently, the workflow is as follows: the work (the dataset and the kernel)
is submitted to a group device. The dataset placement is delayed until the kernel
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arrives. When the routing logic sees that the kernel has been submitted, it uses the
information about the previous runs together with information about the current
workload in order to make the routing decision of where to place the dataset and the
computations.

Moreover, the routing mechanism is implemented at the NDRange level of granu-
larity. Pending the resolution of a number of problems, the NDRange is decomposed
into workgroups and the execution is managed at the workgroup level of granularity.

On the other hand, FPGAs do not map to the CPU model very well. Hence, recon-
figuration is achieved through the BitMan API [15]. The computations are started
through separate memory mapped APIs. The actual bitstream with accompanying
information is specified in the XML file in the proprietary format and, in general,
any FPGA can be addressed over UNIMEM as their interface is memory mapped.

In order to pull all these parts together an FPGA Management Layer is utilised,
responsible for device discovery, resource management, device reconfiguration, com-
putation submission and execution management. That Management Layer acts as a
group device, which combines many physical FPGAs into one.

Hence, the resulting workflow is similar to that of the CPU: the placement of the
dataset is delayed until the arrival of the kernel. It is only at that time that a routing
decision is made. The difference to the CPU approach is that the routing algorithm for
an FPGA needs to take into account the reconfiguration overhead and the bitstream
footprint as well as other parameters. Similar to CPU, the NDRange is partitioned
into workgroups, which are then scheduled and managed independently.

11.3.3 Middleware and High-Level Synthesis

The middleware bridges the gap between the reconfigurable hardware and the soft-
ware parts of the full application, providing the means to enable a fully software-
driven development flow. The middleware plays two main roles, i.e. provides the
partial-reconfiguration toolset and the SW-HW communication library. Thus, first,
it performs partial reconfiguration at runtime. This includes the development of a
low-level driver back end that adds virtualisation features, such as de-fragmenting
the reconfigurable resources, accelerator migration and pre-emptive hardware exe-
cution. Second, it provides a communication library and API in order to call any
function that is implemented in hardware.

ECOSCALE supports hardware-assisted virtualisation, Fig.11.8, in order to
increase the performance and to lower the power consumption. Also, it extends
the HLS tool developed in the FASTCUDA project [14] and holds the main focus
on effectively exploiting the huge cost/performance trade-off space provided by
ECOSCALE, while requiring minimal intervention and no specific hardware design
experience from the programmer.

The ECOSCALE HLS tool provides a way to specify performance and area con-
straints, and then automatically explores high-performance hardware implementation
techniques, such as pipelining, loop unrolling, as well as data storage and data-path
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partitioning and duplication, starting from a non-hardware specific OpenCL model.
Current HLS tools require an experienced designer to take architectural decisions,
such as the DRAM port parallelism, the local data memory partitioning and so on.
These are automated considerably while retaining designer control, if and when
needed.

The tool generates, at compile time, a library with the hardware implementa-
tions of those functions that will be implemented on reconfigurable resources. These
implementations are transformed with the help of a physical implementation tool,
which extends the existing GoAhead framework [3], automatically into an acceler-
ator module library. This includes the steps of resource budgeting, floorplanning,
communication infrastructure synthesis and physical constraint generation for the
reconfigurable fabric, place and route tools, as well as the final partial bitstream
assembly. By minimising module bounding boxes and by using configuration data
compression [13], memory requirements are reduced as well as configuration latency
and configuration power consumption.

At runtime, the system can use this library in a very flexible manner. For exam-
ple, we consider chaining together different accelerator modules for building longer
complex processing pipelines, when needed. This increases substantially the amount
of processing that is carried out per unit of transferred data and results in significant
energy savings.

Finally, Fig. 11.8 shows how multiple function calls of the same function is exe-
cuted in parallel. Each function call in our system is essentially an OpenCL kernel
call, which can be mapped onto multiple work items. Upon reception of a kernel call,
the Virtualisation block starts configuring and scheduling the synthesised hardware
onto the reconfigurable accelerator. For each kernel call, the Virtualisation block
needs to remember only what workgroups have been executed or scheduled for exe-
cution so far. Moreover, it can mix the execution of the kernel originating from
different function calls, as well as provide Quality of Service (QoS) by controlling
the rate at which the workgroups are executed. The Accelerator includes a number
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of the same workgroup implementations, which corresponds to the number of the
outstanding workgroups that can be scheduled in parallel by the Virtualisation block.

11.3.4 Programming Model

ECOSCALE develops co-designed HPC applications based on hierarchical data par-
titioning to achieve locality and reduced data traffic and associated power consump-
tion and latency, and the focus of the programming model efforts is in two directions.
The first is to extend OpenCL to support multiple Workers, distributed command
queues and transparent command queue management across Workers in a Compute
node. The second direction is towards providing a transparent substrate to achieve
data access locality from OpenCL instances running in Workers. The global memory
in each Compute node is treated as a collection of NUMA domains accessible via
the UNIMEM interface. Consequently, topology-aware global memory allocators are
used by the OpenCL runtime for implicit data allocation, migration and replication
between workers.

Traditionally, an OpenCL programming model would represent each physical
accelerator, i.e. GPU or FPGA, as an object of type c1_device_id. The dataset
would be submitted to that chosen device along with a kernel while the kernel repre-
sents one unit of execution. Upon kernel submission, the user instructs the runtime
how many kernels to instantiate, i.e. the so-called NDRange, and also how to group
them. An instance of a kernel is known as a work-item and a group of work items is
referred to as a workgroup. Any work-item can access any part of the dataset. The
work items are synchronised within a group through the use of barriers, but are not
synchronised across the workgroups.

Whereas, originally, the OpenCL programming model was intended for execution
on just one host, numerous projects such as SnuCL, VCL and VOCL [2, 10, 20] have
extended that model by making remote accelerators accessible as if they are located
all on one host.

Thus, as a further extension to that model, ECOSCALE introduces the notion of a
group device. Contrary to an ordinary OpenCL device, the group device corresponds
not just to one physical device, but to many devices (including remote devices, i.e. on
other Workers). By using the group device, the developer no longer has to partition
the data and computations as this is done automatically within the routing logic of
a group device. The partition patterns can be specified by the user, and these are the
REPLICATE, BLOCK, CYCLIC and HALO [19].

11.4 Conclusions

Today’s technologies and architectures cannot efficiently scale to exascale. A holis-
tic approach tailored to the characteristics and trends of future HPC application is
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required. Towards this end, ECOSCALE employs a novel hardware architecture,
runtime system and programming model in order to be able to directly map the HPC
application’s hierarchical structures onto hardware resources, while in parallel it takes
full advantage of energy-efficient reconfigurable computing. ECOSCALE provides
solutions for all the aspects of an HPC environment, ranging from architecture and
runtime optimisations, to partial reconfiguration, HLS and hardware virtualisation.

Finally, the ECOSCALE framework introduces two novel technologies, i.e.
UNIMEM and UNILOGIC. These technologies are major contributors in the concept
of resource sharing independent of whether they are remote or local and span from
those of memory to those of processing through reconfigurable logic.
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Chapter 12 ®)
On Optimizing the Energy Consumption oo
of Urban Data Centers

Artemis C. Voulkidis, Terpsichori Helen Velivassaki
and Theodore Zahariadis

12.1 Introduction

Data Centers (DCs) are responsible for the absorption of an enormous and steadily
increasing amount of energy, bearing considerable impact on the environmental con-
ditions worldwide, particularly in terms of physical resources depletion and CO,
emissions. In 2011, the total energy consumption of DCs was estimated at around
271 billion kWh, enough to power up all residential households of industrialized
countries such as France or the UK or, equally, comparable to the total amount of
energy consumed by Italy [1], approximately 7% of the US total energy consump-
tion [2]. Just the Microsoft DC in Washington (Quincy) consumes 48 mW, which is
enough to power almost 40,000 households [3, 4]. In the same context, the energy
consumption of DCs greatly affects the global economy; modern DCs may have
operational costs as high as $5.6 M [5] per year, while in 2010 and 2011, USA spent
approximately $35 billion in serving DC power needs.

Besides electricity consumed for supporting the computing services provided by
the DCs, a huge amount of energy is also consumed for the cooling of computing
servers. To lower this waste of energy, DC containment strategies (both hot aisle
and cold aisle) are widely regarded as the starting point for energy efficiency best
practices. Moreover, the so-called “Green DCs” aim to use green energy sources
(e.g., photovoltaic cells, geothermal power, hydroelectric energy, etc.) for normal
operations and cooling purposes. The results are, in many cases, impressive, but they
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still represent a minority of the deployed DCs and even in those cases, the intermittent
nature of green energy sources makes the need for their effective integration to the
energy network and for stable smart grid operation more actual than ever.

In this framework, recent advances in the digitization of the energy sector through
the emergence of the notion of the smart grid introduced significant challenges as to:

(a) how to support the proliferation of urban DCs, namely DCs located in or in
the close vicinity of urban environments such as cities of any size, with the
subsequent increase in the energy demand, further augmented by the relevant
suboptimal energy management. Generally, the average utilization in terms of
computational resources in DCs is relatively low, often not reaching 30% of
the maximum server load capacity and only 10% in case of facilities that pro-
vide interactive services [6]. The operational security-driven over-dimensioning
of DCs and the increased number of underutilized servers have significantly
increased the energy consumption, leading to increasing energy needs for cool-
ing DC IT equipment. Towards energy saving, DC containment strategies (both
hot and cold aisle) are widely regarded as the starting point for energy efficiency.

(b) how to manage the operational instability of the smart grids in an increasing
energy demand context and alleviate their difficulty to follow the electricity
demand-response model. As energy generation globally shifts away from fossil
fuels in favor of renewables, smart electricity grids are becoming increasingly
harder to operate and maintain.

In this direction, several research activities focus on energy-efficient DC operation
and many energy reducing methods have been proposed. Particularly, heating, venti-
lation, and air conditioning control (HVAC) techniques exploit the nonlinear depen-
dence of the energy consumption on the DC air temperature. On the other hand,
numerous techniques trade-off performance for energy saving, including CPU scal-
ing/voltage control (Dynamic Voltage/Frequency Scaling—DVEFES), load migration
and load shifting [7]. To elaborate, controlling CPU voltage and scaling its operat-
ing frequency results in reducing its performance, simultaneously baring significant
energy savings, whereas load migration and load shifting refer to the procedures
of moving the computing loads in the spatial and temporal domain, respectively.
Specifically, load migration consists of transferring the computing requirement of a
service from one server host to another, whereas load shifting postpones serving a
load at later time instances, e.g., when the energy required for this service is cheaper
or abundant.

In [8], a survey on the most popular techniques for improving the energy efficiency
of large scale data centers is presented. The authors classify the existing literature into
three different optimization levels, namely optimization at node (host), optimization
of infrastructure, and optimization of virtualized environments. These optimization
levels include, among others, DVFS, software and hardware improvements, task
scheduling and thermal management and virtual machines (VM) migration. A similar
survey has been conducted in [ 7] where asymmetry-aware scheduling is also surveyed
as a way of maximizing performance through proper exploitation of the multi-core
capabilities of modern CPUs.
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Weiser et al. [9] were among the first to notice that it is more energy efficient
to serve a computing intensive, Quality of Service (QoS) constrained application
in a just-in-time manner operating at lower CPU frequencies, rather than serving
at full processor speed, completing it before its deadline and then idling, introduc-
ing the term of DVFS. Since then, numerous approaches have been proposed to
optimize DVFS patterns when applied to control CPU [10-13] and RAM [14] (or
even both [15]) of physical servers. Specifically, in [10], it is argued that per core
DVES can achieve up to 20% energy savings, a result affirmed by [11] as well,
while [12] concludes that although recent advances in transistor lithography tech-
nology significantly diminishes the merits of DVFS (due to the reduced dynamic
power range), non-negligible power savings may be attained via CPU DVFS. Two
energy-aware heuristics taking into consideration different power consumption met-
rics are presented in [13], indicating that smart execution scheduling assisted by
DVFS can greatly reduce server energy dissipation. The authors of [14] explore the
trade-offs between performance and energy efficiency when performing DVFS on
RAM DIMMs, using linear approximations to model the reduction of performance
due to the scaling applied. The experiments conducted indicate that significant energy
savings might be achieved by applying DVES, especially in cases of low memory
utilization.

Controlling the network equipment has also been an area of active research and
experimentation since, in this manner, significant energy savings may be attained
[16]. Indicatively, in [17], the need for energy-aware networking interfaces in large-
scale networks is highlighted, whereas [18] evaluates the energy efficiency of net-
working equipment. Heller et al. [ 19] presented a hierarchical, tree-based architecture
that can significantly reduce the energy consumed by networking devices in large
DCs by turning off idle equipment. Active network equipment switching is also the
target of the optimization methods proposed in [20].

The optimal allocation of the computing load in DC context has also attracted
the attention of the research community during the last years [21-24]. In [21], load
balancing in very large-scale DCs running network intensive applications (Windows
Live Messenger services) is examined. The authors claim that proper estimation
of future load may lead to increased energy savings, without compromising end-
users Quality of Experience (QoE). Voorsluys et al. elaborate on the cost of live VM
migration, concluding that under heavily used DCs live migration might result in non-
negligible delays and, even, QoS breakage. However, under normal circumstances
it should engender barely noticeable changes to end-users QoE. A low-complexity
variation of the well-known Best Fit Decreasing (BFD) algorithm to optimally allo-
cate VMs in a DC is proposed in [23]. This algorithm prioritizes the servers that are
going to accommodate the migrated load according to the overhead power that they
will need to properly serve this load.

A load migration scheme to maximize the use of green energy through proactive
scheduling is proposed in [25]. Specifically, the authors propose a load migration
scheme on a network of spatially dispersed DCs, each one supported by one or more
Renewable Energy Sources (RES), based on predictions related to the short-term
future DC load and the availability of green power near the DCs. The corresponding
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simulation results suggest that a large amount (up to 30%) of brown energy may be
replaced by green energy, at the cost of slight (approximately 2%) increase of energy
consumption.

Based on the related work and the available methods for reducing energy cost,
the present paper classifies the available degrees of freedom outlining the general
framework of energy-efficient DC operation. In this course, a general architectural
approach is described comprising an ecosystem of collaborative DCs, exploiting the
available degrees of freedom and the emerging levels of optimization. The proposed
architecture facilitates the implementation of four different optimization levels and
has been developed in the context of the European Union project: “Data centres
Optimization for energy-efficient and enviromentalLy Friendly INternet (DOLFIN)”
[26]. A similar approach is followed by another EU project “Green nEtworked data
centers as energY proSumers in smaRt city environments” (GEYSER) [27]. The next
paragraphs are the result of collaborative liaison research developments of these
two projects, with a focus on DOLFIN for reasons of brevity. Having defined a
flexible system architecture, the present paper examines the leeway provided by
software-defined networking (SDN) to achieve DC systemic flexibility. Specifically,
system-defined infrastructure (SDI) is employed to achieve efficient VM scheduling,
server resources reclamation, and substantial energy savings during periods of low
server utilization. Since the average server utilization in a DC is often well below
30% of the maximum server load [28, 29] or even 10% in case of DCs providing
interactive services [30], an efficient VM scheduling scheme reducing energy cost
during low server utilization is essential. In this course, the proposed scheme focuses
on allocation of VMs accommodating low load, solely based on SDN. As a result,
newly admitted VMs are placed on servers in accordance with a policy minimizing
reserved physical resources (i.e., memory) and the implicit operating energy cost.
Thus, the energy cost incurred by migration, relocation, and other load optimization
techniques is discounted, during low server utilization. However, in cases of high
load, the proposed scheme must be used complementary with load optimization
techniques and this remains to be tackled by future works within the scope of the
two aforementioned EU projects.

The remainder of the chapter is organized as follows. Section 12.2 presents the
available degrees of freedom and the emerging levels of optimization for energy-
efficient DC operation. Section 12.3 provides the flexible architecture design of
DOLFIN facilitating the implementation of the optimization process described in
Sect. 12.2. Next, Sect. 12.4 formulates the VM scheduling problem, proposing a
VM allocation scheme based on the “First Fit Decreasing” algorithm (FFD) [31].
Section 12.5 presents the evaluation of the overall DOLFIN solution and, finally,
Sect. 12.6 concludes the paper and presents relevant perspectives.
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12.2 DC Energy Efficiency Characteristics

The techniques described in the introduction pave the way for the implementation of
an elastic cloud able to manage cloud resources and handle client requests in a flexible
way, through the efficient scheduling of VMs accommodating the cloud load. This
allows for energy-efficient DC operation, which is essential from an operational point
of view, especially given the large scale of modern DCs. Indicatively, the average DC
energy consumption was equal to that of 25,000 households in 2007 and doubles every
five years [24]. Hence, the energy-efficient and flexible DC operation is of essence,
whereas DC interaction with the energy network can be exploited to counteract the
adverse effect of the stochastic nature of renewable energy production, stabilizing
smart grid operation by dynamically allocating the DC resources. The high-level
architecture of such a federated DC network interacting with the underlying energy
network is presented in Fig. 12.1.

In this course, the available techniques enabling seamless operation of such a flex-
ible federated DC network need to be featured and exploited. Based on the literature
review presented in the previous paragraphs, these techniques include, among oth-
ers, DVFS, load migration, load relocation, load shifting, HVAC control, and Service
Level Agreements (SLAs) renegotiation. SLA Renegotiation refers to the process of
automatically negotiating and agreeing with DC customers in lowering the SLA
performance parameters in favor of decreased service prices and minified energy
consumption. This process can be automated, based on customer profile information
and a predefined customer latitude.

In order to exploit the above degrees of freedom in the flexible federated net-
work of Fig. 12.1, each technique needs to be assigned to the respective network
level amenable to the specific optimization, namely the servers’ rack level, the DC
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Fig. 12.1 Federated DC network interacting with the energy network
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segment level (e.g., a server room), the DC level, and the Federated DC Level. In
particular, DVFS takes advantage of the quadratic dependence of CPU power on
CPU supply voltage and the linear dependence on clock frequency to trade off per-
formance in favor of substantial CPU power savings. And since CPU is the major
energy-consuming part of the servers’ components, DVFS has a great impact on
server power, thus being amenable to Server’s Rack Level optimization.

Load migration refers to the process of moving VMs accommodating computing
load across the same DC, to consolidate loads in the same server or DC segment,
thus allowing the shutdown of free servers providing substantial energy savings.
Therefore, load migration implicitly refers to the DC Segment and the DC Level
along with HVAC. HVAC refers to the heating, ventilation, and air conditioning
control of the DC or DC segment to trade off performance in favor of energy savings,
exploiting the nonlinear relation of energy savings and temperature decrease.

Load relocation describes the process of moving VMs across different DCs,
exploiting a lower energy price at a synergetic—interconnected DC or a possible
energy surplus provided by a renewable energy source near the synergetic DC. Load
relocation is applicable to the federated DCs level, distinguishing itself from load
migration since moving of VMs between DCs requires moving of the swap space
and disk space introducing a significant stress to the system and network following
the movement of a substantial amount of data.

Load shifting defines the moving of VMs in the time domain, i.e., the postpone-
ment of a certain load in favor of energy or cost savings to time periods when energy
prices are lower or non-negligible energy surplus is available. Load shifting should
always be in line with the contractual customer SLAs and, just like SLA renegotia-
tion, is applicable to all levels of optimization. That is, since the load of a server rack,
a DC, and a DC network can all be postponed, provided the customer has consented
to the load shift and the customers of all levels can renegotiate the existing SLAsS.

The above classification of the system degrees of freedom gave rise to four dif-
ferent optimization levels that should be dealt with. In this course, we a distributed
spiral optimization process dealing with all four levels of optimization. Specifically,
during a single optimization cycle, the energy is optimized first by an internal control
loop at servers’ rack level, next at DC segment or DC level and then at federated
DC level allowing load relocation among energy-conscious DCs. Thus, a network
of interconnected DCs employing the spiral optimization approach could provide
energy-efficient DC operation in the context of a fully elastic cloud, while playing
a key role in a smart grid energy network balancing the stochastic energy surplus
provided by renewable energy sources.

12.3 Architectural Overview

Although both DOLFIN and GEYSER projects share common characteristics and
scope of research, their approach is fundamentally different, DOLFIN emphasizing
on the DC level optimization and GEYSER embracing the smart city ecosystem by
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means of an energy marketplace enabling green energy trading among DC and smart
city actors. The analysis following in the next paragraphs is derived mainly on the
DOLFIN approach.

Following the classification of all available degrees of freedom, a flexible architec-
ture has been specified to facilitate the implementation of the DOLFIN optimization
process. Such an architecture consists of three key components, namely an Energy
Consumption Optimization Platform (eCOP), an energy-conscious Synergetic Data
Centers (SDC) module, and an Energy Broker facilitating the interaction of the
DOLFIN entity with the underlying energy network.

eCOP lies in the core of DOLFIN platform and is responsible for the energy con-
sumption optimization at DC level. In this sense, eCOP is responsible for implement-
ing the lower three of the optimization levels, employing all techniques presented
earlier, except for load relocation. On the other hand, SDC is responsible for apply-
ing the fourth level of optimization, employing load relocation along with universal
load shift and SLA renegotiation, at DOLFIN level. Finally, the Energy Broker is
the liaison of the DOLFIN ecosystem with the energy network, providing insights
related to the variable smart grid energy demands, driving DOLFIN operation toward
an operational status of balancing the smart grid network.

The above architecture can be further analyzed focusing on subcomponents of
eCOP and SDC, facilitating existing and new DC functionalities. DC components
available in contemporary DCs that are also essential in the context of the pro-
posed flexible architecture are: a DC Operator (DCO) Hypervisor Manager, a DCO
Appliance Manager and a DCO Monitor/Collector. The DCO Hypervisor Manager is
responsible for translating high-level decisions into low-level actions and operations,
pertaining to ICT hardware management and VM configuration. A DCO Appliance
Manager, being the counterpart of the DCO Hypervisor Manager on non-ICT infras-
tructure, executes high-level decisions related to HVAC and lighting facilities control.
Finally, a DCO Monitor/Collector collects operational and energy-related informa-
tion of both the ICT and non-ICT infrastructure and persists them into the eCOP
Data Base.

Apart from the existing DC functionalities, additional functionalities have been
defined within the framework of DOLFIN. Specifically, the eCOP Monitor Data Base
stores all real-time and historical energy related data of the DC in hand. These data
provided by the DCO Monitor/Collector are used along with data collected from
all DC components to assist high-level decisions for the achievement of energy-
efficient operation. An ICT Performance and Energy Supervisor is also a requisite
feature of the proposed architecture, aggregating in a systematic way performance
utilization data collected by the eCOP Monitor Data Base, e.g., CPU utilization,
memory consumption, etc., of the hosted VMs, to perform an in-depth analysis of
the utilization levels of each device. These data are subsequently fed to an Energy-
Efficient Policy Maker and Actuator, that is the most intelligent component of the
eCOP, to take decisions oriented toward energy-efficient operation, based on the
utilization levels of each DC devise, realizing the lower three levels of optimization
under consideration.
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Furthermore, several new DC functionalities need to be defined to support the
network of SDC and realize the fourth level of optimization. At DOLFIN level, a
Cross-DC Monitoring Data Collector should be initially employed to collect informa-
tion from the network routers, to ensure load relocation is feasible from a network
point of view given the current traffic and network utilization. Then, a Cross-DC
Workload Orchestrator, i.e., a distributed software element of intelligence, gets the
SDC decisions regarding load relocation, load shift and SLA renegotiation. The
Cross-DC Workload Orchestrator collects information from the Cross-DC Moni-
toring Data Collector and the DOLFIN Information Data Base to implement the
necessary courses of action toward energy optimization. The DOLFIN Information
Data Base contains information regarding all DOLFIN architecture components and
information regarding the local energy requirements of each DC, i.e., DC energy
demand and energy offer from the local smart grid operator. Subsequently, based
on the information obtained by the Cross-DC Monitoring Data Collector and the
DOLFIN Information Data Base, the Cross-DC Workload Orchestrator realizes the
fourth level of optimization implementing the load relocation through the employ-
ment of the Cross-DC VM manager. A Cross-DC Manager realizes the interface of
interconnected DCs, performing the actual VM relocation cross DCs.

The above-described components collaborate closely to provide flexible and reli-
able cross-DC communication in the direction of efficient load relocation. However,
toward the SLA renegotiation and the energy network interaction, additional com-
ponents are required. In particular, a SLA renegotiation controller is responsible for
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exploiting the leeway provided by customer agreements trading off performance to
energy savings. Specifically, in cases where temporal performance degradation is
essential to the DC operation, the SLA renegotiation controller explores the latitude
provided by the customer SLAs to provide services of lower performance at a lower
price, in favor of energy savings, possibly critical to the DC operation. This task
is performed through the notification of the Energy Efficiency Policy Maker and
Actuator of the corresponding DC.

Finally, as part of the Energy Broker, a smart grid Controller is required providing
information on the local energy requirements of a smart grid and the offered energy
prices. This information is collected by the DOLFIN Information Data Base and
analyzed by the corresponding local Energy Efficiency Policy Maker and Actuator
who acts accordingly.

The above-detailed components and their interaction are presented in a schematic
way in Fig. 12.2.

12.4 DC Resource Allocation Methodology

Having elaborated on the flexible DOLFIN architecture and the supported levels of
optimization, it is evident that such a DC ecosystem can provide substantial energy
savings while underpinning smart grid networks through balancing the stochastic
renewable energy. In this course, a network of interworking DCs must be able to
exploit the abundant energy, emerging in the context of a smart city through the
efficient load migration and relocation to the regions of interest while the energy
surplus is available. This imposes the formulation of efficient optimization algorithms
for the migration and relocation of loads and remains to be tackled in future works
within the framework of DOLFIN. However, prior to this optimization, the present
paper explores the prospect of employing SDI to deal with the initial allocation of
VMs to servers and the handling of new admission requests.

The benefit from focusing on the SDN aspects of the problem is twofold. First,
a consolidated allocation of VMs to servers based on efficient SDN ensures that
during low server utilization, which is usually the case [28-30], substantial energy
savings can be achieved, without imposing the migration of loads and the energy
cost incurred by data movement. Second, during heavy load and high server uti-
lization when load migration can reduce energy consumption significantly, heavy
load migration can also lead to delay and Quality of Service (QoS) breakage [22].
Hence, the employment of efficient SDN and the consolidated allocation of VMs
prior to the load migration reduces the number of necessary migrations, providing
energy-efficient DC operation while meeting the QoS objectives.

In order to efficiently employ SDI, cloud managers, such as OpenStack [32],
OpenNebula [33] and Eucalyptus [34] can be used to schedule the allocation of
incoming VMs with the objective of minimizing the reserved physical resources
and the implicit operating cost. Given the VM reservation of virtual CPU and the
pervasive employment of shared storage by different VMs, the allocation of server
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CPU and storage to different VMs can be neglected, whereas the only physical
resource allocated in a stringent way is the server memory. That is, since prior to the
instantiation of a VM physical memory is explicitly reserved. The choice of physical
memory has been made in the framework of virtualization services provisioning with
shared CPUs and dedicated RAM resources.

In this context, problem of VM scheduling can therefore be considered as a “bin
packing” problem [31], where given a finite set U = {u;, u,, ..., u,} of “items” (i.e.,
VMs) and arational “size” (i.e., memory) s (1) Vu € U, a partition of U into disjoint
subsets U;, U,, ..., Uy must be found such that the sum of the sizes of the items in
each subset U; is no more than a respective “bin size” (i.e., server memory) S; and
such that k is as small as possible. Thus, VMs of memory s need to be allotted to
servers of memory S, while reserving the minimum number of servers.

Furthermore, the above “bin packing” problem needs to be extended, as the above
formulation is tantamount to the problem of allocating newly admitted VMs to free
servers. However, the problem needs to account for the allocation of VMs to occupied
servers, accommodating previously instantiated VMs, whereas the server memory
reserved by completed VMs needs to be reallocated dynamically. In this course, the
problem needs to be divided in two: first, VMs need to be efficiently allotted to free
servers and second, newly admitted VMs need to be allotted amidst the existing VM
allocation, exploiting unreserved memory resources in the direction of a consolidated
memory allocation. For both cases of memory allocation, a memory granularity of
512 MB can be assumed which is a typical value encountered in practice.

Following the above rationale, the energy-efficient VM allocation into free servers
is equivalent to the “bin packing” problem, hence, the FFD algorithm [31], which
constitutes one of the best approximation algorithms for the “bin packing” problem,
can be employed, in the direction of a consolidated memory allocation. In this course,
the DC servers are indexed based on their energy efficiency, with energy-efficient
servers being assigned a lower index. Subsequently, “items” (i.e., VMs) are placed
into “bins” (i.e., servers) in order of increasing index. As a result, energy-efficient
servers are assigned a higher priority and for instance servers of a Green Room
are reserved first, or servers of the same DC segment are reserved prior to remote
DC servers to allow remote DC servers to hibernate, providing substantial energy
savings.

To consolidate the VM reserved memory and minimize the number of active
servers, one could observe that the worst performance of the above algorithm occurs
when smaller “items” appear before the larger “items” in the ordering used by the
algorithm, since smaller “items” which could be used to fill a half-empty “bin” tend to
occupy whole “bins”. Hence, the FFD algorithm states that instead of merely taking
the items from U in the given order, we first sort them by size and re-index them so
that s (u;) > s (up) > --- > s (u,). “Items” are then placed in order of increasing
index into the lower indexed “bin” they fit.

Moving to the second part of the problem, that of placing incoming VMs amidst
an existing VM allocation, an FFD policy is also assumed to provide a consolidated
VM allocation to the extent possible, without the employment of any load migration
scheme. Thus, the energy cost emerging from data movement is discounted, whereas
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loads insusceptible to migration (e.g., live VMs subjected to strict SLA) do not
hinder the energy-efficient operation of the DC. However, since load migration is
a vital feature of an interconnected DC architecture, the proposed scheme can be
consecutively integrated to a load optimization module, providing significant energy
savings.

The proposed FFD algorithm sorts every incoming VM and all currently hosted
VMs by size. Subsequently, VMs of order index i are placed on servers of greater
equal index than the server hosting VM of order index i — 1. Thus, the incoming
VMs are not placed in the first server of sufficient memory resources, but follow a
FFD policy even if this leads to an unconsolidated memory allocation. If the strictly
consolidated memory allocation is a requisite feature, a load migration could be
employed in the framework of an alternative FFD policy. However, the proposed
scheme manages to capitalize on the benefits of the FFD algorithm, while forgoing
any data movement.

In the VM scheduling scheme described above energy-efficient allocation of VMs
can be achieved, without necessitating the migration of loads. However, the sequential
allocation of VMs could result (during heavy load) in the allocation of VMs in remote
DC servers, reserving them for a long period of time while all adjacent servers have
returned to hibernation. Therefore, a safeguard is required restoring the system to its
original state (i.e., a consolidated, sequential VM allocation) after a certain period
of time. In this course, the system safeguard can adjust its restoration frequency
dynamically, based on its previous performance. To elaborate, a list of previous
restoration frequencies can be maintained along with the relevant energy savings,
incurred by the system restoration. Each restoration frequency can then be assigned
a weight based on the achieved energy savings and the current restoration frequency
can be computed as the weighted average of all restoration frequencies in the list.

The proposed FFD scheme employing the above safeguard could be implemented
through SDI, yielding significant energy savings in the framework of a DC intercon-
nected ecosystem, without the employment of any load optimization algorithm. Most
importantly such a SDN approach could reduce energy consumption even further if
employed complementary to a load optimization module.

12.5 Evaluation

The evaluation procedure can be summarized as a set of semi-random DC config-
urations containing a (each time) variable numbers of DC rooms, racks, servers,
and VMs, the number of the latter changing as a function of average server CPU
and/or RAM utilization. In this sense and for the rest of this section, the term “DC
configuration” will refer to a static number of:

1. DC rooms;
2. Racks per DC room;
3. Servers per rack;
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4. CPU/RAM utilization.'

For each configuration, 20 emulations were performed in order to reduce the effect
of randomness in the generation of VMs and servers’ characteristics and the respec-
tive measurements. In each emulation, the characteristics (number of logical CPU
cores, memory capacity, HDD capacity, consumption characteristics and whether
it is a green one or not) of the servers change randomly bound by preconfigured
minimum and maximum values, altering the DC configuration as to its computing
power and energy consumption characteristics. Similarly, each time, four different
VM flavors (e.g., VM virtual hardware configurations) are defined in a random, par-
tially preconfigured, manner and the instantiated VMs follow the specifications of
one of the generated flavors, at random. Based on the VMs characteristics, a set of
semi-random” measurements were determined and corresponded to the VMs of each
DC configuration.

12.5.1 Models Used

To calculate the energy savings incurred by the application of DOLFIN in the various
DC configurations in a homogeneous manner, specific energy models were consid-
ered as to the energy consumptions of the physical DC servers, under the assumption
that the servers were 100% dedicated to serving virtualization services, namely run-
ning applications residing inside VMs. Assuming a server s and a VM residing in
this server, the following equations overview the energy models used:

E; =a+b-loads p, + c - loads mem + d - load, ye (12.1)

E, =b-load, p, + c -load, ey +d - load, pe (12.2)

where

e a is the energy consumption of the server when idle;

e b is a coefficient correlating the average CPU load of the server to the respective
energy consumed;

e cisacoefficient correlating the average memory load of the server to the respective
energy consumed; and

1For the present evaluation, only average CPU utilization has been considered, though setting RAM
utilization is also allowable through the evaluation framework settings.

2The semi-randomness is based on the following: for each VM, a pseudo-random numerical ID
gets generated and is fed to a sine function to affect the respective period. Next, based on the
current emulation time, a value between 0 and 1 is calculated and is multiplied by the CPU/RAM
characteristics of the VM, as dictated by its flavor to get the semi-random, to get the CPU/RAM
measurements.
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e d is a coefficient correlating the average network bandwidth utilized by the server
to the respective energy consumed.

and

o loads cpy = ), load, cpu

o loads yem = Y, loady mem
o load pe; =), load, ne

In addition to the energy models, in order to be able to evaluate the revenue-related
performance of DOLFIN simultaneously allowing for the definition and support
of flexible SLAs based on performance (in terms of “greenness” and computational
capabilities provided to each user), a simple revenue model has been adopted, applied
in the course of the optimization procedure. The revenue model includes the calcu-
lation of the possible earnings of the DC operators due to service (computational
resources) provisioning in the form of VMs and the cost that occurs due to the
energy consumption of the various DC elements. In this framework, the total rev-
enue model that has been adopted for the evaluation of DOLFIN, assuming that the
DC features S servers hosting V' VMs in total and supported by a number of N
non-IT infrastructure elements (e.g., lighting, HVAC), is summarized by

v
Revenue = Z (v.cpus - v.serverepu_frequency * CPUmult + V.Fam - memyyjz) - Priceoffset
v=1
N N
- Z energy_consumption (s) — Z energy_consumption (n) (12.3)
s=1 n=1

where

® cpupy; and mem,,,;, are multipliers characterizing the contribution of the CPU
and RAM usage to the price determination and

® price,ssser 18 a variable used for scaling the price to the current operational envi-
ronment of the DC and also allowing for special pricing for individuals or special
groups of users.

For the energy consumption of the servers, namely the second summation apparent in
(12.3), the aforementioned energy models have been employed. In order to calculate
the energy consumption of the non-IT elements (lighting and HVAC), we have used
generic rules and assumptions;

e It has been assumed that each rack is lit by a single lighting element of average
power dissipation equal to 50 W;

e Ithas been assumed that the energy needed to cool a server equals the BTUs of heat
output it presents, using a variable server efficiency parameter ranging from 0.6
up to 0.9 [36]. We have also assumed a standard temperature difference between
the outside world and the DC-internal one, so that any changes in the cooling
energy consumption occurs as a function of the heat load produced by the physical
servers.
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Evidently, a different revenue model will result in different figures as to the perfor-
mance of DOLFIN in terms of creating actual revenue out of energy efficiency or
performance policy actuation (see next paragraph). However, this model has been
chosen as an indicative case that enables smart and flexible SLA provisioning, based
on the actual computational and energy efficiency characteristics that are being pro-
vided by the DC operators to their clients.

12.5.2 Evaluation Outcome

In this section, the core conclusions from the DOLFIN evaluations as a whole are
drawn. For each DC type of interest to DOLFIN (spanning from large commercial
DCs to smaller urban DCs and micro-DCs), the DOLFIN solution was evaluated
against several DC configurations, the total number of evaluations been calculated
by the following equation:

TOTAL = MAX_NOMIN_NO x (RACKS_PER_ROOM_NO — RACKS_PER_ROOM_NO)
x (SERVERS_RACK — SERVERS_RACK)
X (MAX_UTILIZATION_SERVERS_RAM — MIN_UTILIZATION_SERVERS_RAM) /10)

x OPTIMIZER_PER_SETUP x POLICIES_NO_SIMULATIONS (12.4)

A total of a number of more than 15,000 simulations and (accordingly) opti-
mization plans were conducted. The source code of the evaluation framework can be
accessed online through the DOLFIN source code management platform [35], where
details about the entire set of emulation parameters as well as instructions on how
to configure the evaluation procedure are given. Indicatively, for the emulation pro-
cesses in the context of urban micro-DCs operating 25 racks, the core configuration
options are tabulated and presented in Table 12.1.

12.5.2.1 Urban Micro-DCs

In this case, we examine micro-DCs containing a very limited number of racks (2—
5) in a single room. In the following, the performance of DOLFIN is examined
on the basis of the above configuration (see Table 12.1), generating a number of
11,200 different scenarios; 20 repetitions per DC setup were conducted. Although
we conducted the evaluation with the number of servers per rack changing from 2 up
to 6, next the results for 5 servers per rack are presented, to facilitate the comparison
with the forthcoming medium-sized DC results.

The following figures present the average number of VMs, the energy gain and
the revenue benefit from applying DOLFIN when the initial micro-DC load changes
from 20 up to 80% and the optimization policy has been set up (by the Policy Maker)
to optimize against the energy consumption.
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Table 12.1 Basic configuration of the core emulations set for the case of urban micro-DCs

Variable Description Value

MIN_ROOMS_NO The minimum number of rooms per 1
scenario

MAX_ROOMS_NO The maximum number of rooms per 2
scenario

RACKS_MIN_PER_ROOM_NO | The minimum number of racks per room | 2

RACKS_MAX_PER_ROOM_NO| The maximum number of racks per room | 5

SERVERS_MIN_PER_RACK The minimum number of servers per rack | 2

SERVERS_MAX_PER_RACK The maximum number of servers per rack | 6

SERVERS_MIN_RAM_GB The minimum possible amount of RAM 16
of a server in GB

SERVERS MAX RAM_GB The maximum possible amount of RAM 128

of a server in GB
SERVERS_MIN_CPU_CORES The minimum possible number of logical | 16
cores of a server

SERVERS_MAX_CPU_CORES | The maximum possible number of logical | 24
cores of a server

SERVERS_MIN_FREQ The minimum possible maximum 1.8
frequency of a server in GHz
SERVERS_MAX_FREQ The maximum possible maximum 4.0

frequency of a server in GHz
MIN_INITIAL_UTILIZATION_ | The minimum initial CPU utilization of 20%

SERVERS_CPU the servers in total (DC utilization)
MAX_INITIAL_UTILIZATION_ | The maximum initial CPU utilization of 80%
SERVERS_CPU the servers in total (DC utilization)
OPTIMIZER_REPETITIONS _ The number of repetitions to optimize a 10
PER_SETUP certain setup (number of rooms, racks,

and servers under fixed initial aggregate

DC utilization)
SERVERS_PERCENTAGE _ The percentage of green-powered servers | 10%
GREEN

The results indicate that as the number of hosted VMs increases with the average
DC utilization (Fig. 12.3), the energy gain decreases as the DC configuration options
get less and the possibility to result in inactive servers to put them in sleep state
decreases (Fig. 12.4). Interestingly, a simple linear regression analysis indicates that
the rate of energy benefit reduction as a function of the average DC utilization is on
average about 4.1% for each 10% of increase in the average DC utilization with an
R2 value of 0.96. In absolute numbers, the percentage of the expected energy gain
for highly underutilized micro-DCs was ranged between 65 and 75% whereas the
respective numbers for highly utilized micro-DCs were much lower ranging from
approximately 42% down to 37%.
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Fig. 12.3 Average number of VMs hosted by the Micro-DC as a function of the average micro-DC
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Fig. 12.4 Average energy consumption benefit as a function of the micro-DC utilization (energy
efficiency policy)

Simultaneously with the decrease in the energy benefit as the DC utilization
increases, the expected revenue change also decreases (Fig. 12.5), at a rate similar to
the energy reduction one, presenting on average a benefit reduction rate of approx-
imately 5.6% with an average R? value of approximately 0.9. In absolute numbers,
the expected energy gain ranged from approximately 45-55% for the case of highly
underutilized DCs down to 16—18% for the case of highly utilized DCs. This behavior
is to be expected as the limited number of servers (thus limited heterogeneity on the
hardware energy consumption) in combination with the policy applied the optimiza-
tion procedure which was set to reduce the energy consumption of the micro-DC can
explain the strong dependence between the two values.

Indeed, the following table presents the results of a simple correlation analysis
between the expected energy and the expected revenue gain after the application of
DOLFIN, the policy being set to optimize against energy consumption minimiza-
tion. The high correlation value (0.91) indicates that the two attributes are highly
correlated, the revenue benefit being caused by the lowered energy consumption of
the DC elements (Table 12.2).
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Fig. 12.5 Average revenue benefit as a function of the average micro-DC utilization (energy effi-
ciency policy)

Table 12.2 Correlation analysis between the energy and the revenue gain for the case of 2 racks
(energy policy)

Energy gain Revenue gain
Energy gain 1 0.91
Revenue gain 0.91 1
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Fig. 12.6 Average energy consumption benefit as a function of the average micro-DC utilization
(performance policy)

Next and as regards the DOLFIN system operation under a policy set to maximize
the performance (hence revenue based on a revenue model that linearly correlates
the revenue amount on the computational power offered to the DC clients). The
following figures summarize the relevant findings (Figs. 12.6 and 12.7).

As expected, as DOLFIN did not account for prioritizing energy efficiency during
this set of emulations, the percentage of the energy gain attained was significantly
lower than when optimizing against energy efficiency. Moreover, the rate of change as
afunction of the average DC utilization dropped to an average of approximately 3.6%
for each 10% increase in the average DC utilization, indicating that when operating
under the “Performance” policy, the average utilization is of lesser importance; it is
actually the heterogeneity of the energy characteristics of the more powerful (from a
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Fig. 12.7 Average revenue benefit as a function of the average micro-DC utilization (performance
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Fig. 12.8 Difference between the expected energy consumption change when optimizing against
performance instead of energy efficiency

computational point of view) IT equipment that plays the most important role. Simul-
taneously, the absolute numbers of the expected energy benefit also dropped in by
40% (in absolute numbers) compared to the energy efficiency-oriented optimization
case. The following figure graphically presents the above.

As apparent from Fig. 12.8, the energy consumption reduction when optimizing
against energy efficiency targets significantly outpaces the respective when optimiz-
ing for DC performance; the average change on the anticipated energy benefit is
approximately 40.1%.

Despite the significant drop in the expected energy benefits, the expected revenue
benefit in the two cases is on the positive side. This is presented in Fig. 12.9, where
the dependence of the revenue change on the policy used is depicted; despite the
changes depending on the DC configuration and utilization, the average change on
the anticipated revenue is, in total, 13.8%.

Finally, despite the change of in the absolute numbers of energy efficiency and rev-
enue change when employing different policies, the correlation between the change
in the energy gains and the expected revenue gains remains significant as deduced
from Table 12.3.
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Fig. 12.9 Difference between the expected revenue change when optimizing against performance
instead of energy efficiency

Table 12.3 Correlation analysis between the energy and the revenue gain for the case of 2 racks
(performance policy)

Energy gain Revenue gain
Energy gain 1 0.91
Revenue gain 0.87 1

12.5.2.2 Urban Medium-Sized Urban DCs

In contrast to small-sized DCs that normally feature 2—10 racks with an average of 5
being the rule of thumb, medium-sized urban DCs are generally considered to contain
6-80 racks with an average number being 25. In the following, the performance of
DOLFIN is examined on the same basis as the above configuration, though the
number of racks was configured to be between 20 and 50, generating a number of
860 extra simulations; as in the case of the micro-DCs, 20 repetitions per DC setup
were conducted. The number of servers per rack was fixed to five (5), hence the cases
of 100, 150, 200, and 250 servers were considered. Last, for this set of emulations,
we considered that approximately 10% of these servers (chosen at random) were
powered by green sources, thus not contributing to the overall DC (brow) energy
consumption.

Figure 12.10 presents the number of VMs that were considered, on average, for
each DC setup:

Next, we set the DC policy to optimize against energy efficiency and calculated
the average energy and revenue benefits that were expected to be acquired after
the application of the generated optimization plans. The results from this set of
emulations are presented in Figs. 12.11 and 12.12.

Comparing with the micro-DC case, it can be easily deduced that average expected
energy benefit as seen in Fig. 12.11 is significantly larger than in the case of the
micro-DCs when the DC is highly utilized; this can be attributed to two things:

1. The increased number of available configurations, as it allows for more proper
optimization, exploiting at the highest possible extent the heterogeneity of the
servers available;



234 A. C. Voulkidis et al.

NUMBER OF VMS

=20 racks =B=30 racks ==#=40 racks ==50 racks

§ 2000
S 1500
L™
é 1000
= 500
[

0

20% 0% 40% 50% 60% 70% 80%
% average utilization

Fig.12.10 Average number of VMs hosted by the Micro-DC as a function of the average medium—
sized DC utilization
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Fig. 12.11 Average energy consumption benefit as a function of the average medium-sized DC
utilization (energy efficiency policy)
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Fig. 12.12 Average revenue benefit as a function of the average medium-sized DC utilization
(energy efficiency policy)

2. The introduction of the green-powered servers, as the optimizer attempts to load
them as much as possible;

Interestingly and in accordance with the aforementioned two differentiating fac-
tors, the rate of energy benefit reduction (as calculated through a simple linear regres-
sion) is approximately 5.3% per 10% of increase in the mean DC utilization (with
an R? value of 0.96), which is significantly lower than in the case of micro-DCs
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Fig. 12.13 Average energy consumption benefit as a function of the average medium-sized DC
utilization (performance policy)

indicating that DOLFIN can yield very significant energy benefits in partially green-
powered medium-sized DCs even if they are highly utilized.

Similar remarks hold for the average expected revenue benefit from the application
of DOLFIN, where the expected revenue reduction per 10% of increase in the average
DC utilization is approximately 5.77% with an R? value of 0.94 (on average).

As regards the correlation between the energy efficiency benefit and the revenue
benefit, a very high correlation indicator was calculated reaching 0.97. Next, we set
the DC policy to optimize performance and the respective results are drawn in the
following figures.

As can be easily deduced by a simple examination of Figs. 12.13 and 12.14, once
again, the actual scale of the DC in terms of number of racks does not significantly
alter the performance of the DOLFIN optimization. The average rate of change of
the energy benefit with respect to 10% of increase in the mean DC utilization is on
average approximately 3.8% with an R? value of 0.90. Similar deductions can be
made also for the examination of the expected revenue change as the average DC
utilization increases, the respective rate of change being on average 5.24% with an
R? value of 0.89.
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Fig. 12.14 Average revenue benefit as a function of the average medium-sized DC utilization
(performance policy)
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Based on the above results, Fig. 12.15 depicts how the expected energy benefit
changes as the policy changes (from energy efficiency-oriented to performance-
oriented), whereas Fig. 12.16 presents the respective results focusing on the expected
revenue change .

As expected, the expected energy benefit was significantly lower for the case
of performance-based optimization (hence the negative values in Fig. 12.15) while,
simultaneously, the expected revenue was significantly increased as a result of the
higher value of the services offered. The average expected drop in the expected energy
revenue reached —23.8% whereas the respective increase for the revenue metric was
24.68%.

Comparing the medium-sized with the micro-DC case, it is evident that the
DOLFIN impact on the latter is much more significant than in the former. This
can be attributed to the increased flexibility that the increased number of physical
servers delivers. Of course, the presence of the green-powered servers also plays a
very important role in the exhibited increase of the expected energy and revenue
benefits identified in the context of the medium-sized urban DCs. However, it should
be highlighted that despite the context, it is easily deduced that

1. The DOLFIN solution is able to scale to both types of urban DCs;
2. Its performance is almost linear to the level of average DC utilization;
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3. It is able to be configured to favor energy efficiency over performance (hence
revenue) and vice versa.

It should be also noted that;

1. A different pricing/revenue model would result in different evaluation outcomes
in terms of revenue analysis;

2. In actual smart grid conditions where the price changes due to the smart grid
Operator instructions might be higher, different results would also be attained.

12.6 Conclusions

A practical approach towards achieving energy-efficient data centers operation in
the context of a relevant DC federation is presented. The energy profile optimization
follows a spiral approach, pertaining four different optimization levels and scaling
from single server to federation level. Several techniques for actualizing this energy
consumption profile optimization of the federation of DCs are examined and dis-
cussed. The available degrees of freedom of the general problem of optimizing the
energy profile of federated data center networks are classified and elaborated. Under
this perspective, the developments of two relevant EU projects are examined, both
considering DCs as active smart city actors, offering stabilization services and, even,
energy to the smart grid supporting their operation. A simple technique for efficiently
rearranging workload in the context of a single DC under heavy and light load is
discussed and a number of forward-looking insights are provided. The proposed
integrated DOLFIN approach has been evaluated in the framework of over 15,000
simulations, exhibiting extremely favorable results.
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13.1 Introduction

As discussed in previous chapters, the explosive growth of Internet-connected devices
and the resulted flood of generated data will soon increase the demand for more pow-
erful computing resources in data centres in support of the Cloud and Edge computing
paradigm [1, 2]. However, such an increase of resources can only be realized if the
strict data center energy budgets can be satisfied. Staying under the set energy budget
is not only important for allowing operation of all the resources and for environmen-
tal sustainability but also for maintaining the operational costs low. In fact, according
to Amazon’s estimates [3], at its data centers, expenses related to the cost and oper-
ation of the servers account for 53% of the total budget, while energy-related costs
amount to 42% of the total. In addition, development of servers with improved energy
efficiency is detrimental for the realization of emerging decentralized data centers
at the Edges of the Internet, where cooling infrastructure and power supply options
cannot be as complex as in traditional centralized (Cloud) data centers [4]. How-
ever, improving the energy efficiency of servers is extremely challenging due to the
stagnant voltage scaling (the most effective power saving knob), and the worsening
process variations that nanometer circuits are experiencing [5—7], thus there is a need
for efficient ways to deal with those issues.
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13.2 Challenges in Nanometer Era

As the integrated circuits technology moves into the nanometer regime, circuits
have started experiencing dramatically deteriorating effects of material properties on
(active and leakage) power and die yields. In particular, the inaccurate manufacturing
processes led to substantial fluctuations in critical device/circuit parameters of the
manufactured parts across the die, die-to-die and over time which are only worsening
as critical transistor dimensions reach the atomic scale [8]. The consequence is that
the microelectronic substrate on which modern computers are built is increasingly
plagued by variability in performance (speed, power) and fault characteristics, both
static across multiple instances of a system and dynamic over its usage life. An
immediate impact of such variability is on-chip yields; a growing number of parts are
thrown away since they do not meet the timing and power-related specifications. The
dynamic variations such as voltage droops and aging are extremely threatening for
the correct operation of all the essential components of today’s computing systems,
i.e., processors, static memories used as caches and dynamic memories [8].

Another factor that worsens the power and performance variability is the packing
of millions of transistors in a single die in line with the design trend of multi-core
processors followed for continuing the performance scaling in support of the mul-
tifunctional capabilities of the popular consumer gadgets. Most importantly, such
high transistor congestion is increasing the power consumption that is becoming
a predominant concern especially after the end of Dennard scaling in mid-2000,
which guaranteed that the power density will stay constant as transistors were get-
ting smaller. The stagnant power scaling has led to the threat of dark silicon according
to which the performance scaling in future multi-core systems is power limited in
such a degree so that at the 7 nm process node (2018), more than 50% of the transistors
in a processor will have to be powered off in every cycle [9].

13.3 Conventional Low-Power Variation-Aware Design

Various techniques have tried to address the above challenges in isolation. On one
side, techniques for dealing with transistor variability have involved extra provision-
ing in circuits, known as guard bands, to account for the expected performance degra-
dation of transistors and potential functionality failures. While such guard bands (in
terms of increased voltage margins, circuit redundancy) have successfully ensured
reliable operation up to date, their effectiveness in detecting and correcting all pos-
sible errors is being doubted by researchers, as geometries and supply voltages are
being scaled down and circuits become more vulnerable to failures. As an exam-
ple, the voltage guard bands (i.e., voltage up-scaling) currently adopted against a
variety of issues are already significant ranging from at least 5% for die-to-die vari-
ations to 20% for addressing voltage droops. Indicatively, recent measurements in
ARM processors indicated more than 30% timing and voltage margins in 28 nm [10].
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Recent studies have also revealed that the refresh-rate adopted in dynamic memories
(DRAMs) is extremely pessimistic [11, 12] and can be relaxed beyond the conserva-
tive 64ms that is currently adopted in DDR3 technologies. Such voltage, frequency,
and refresh-rate margins are becoming more prominent with the use of more cores
per chip, the increased voltage droops, reliability issues at low voltages (Vmin), and
core-to-core variations [13—15]. All in all, it is becoming apparent that the amount of
redundancy and guard banding that may be necessary to protect all circuits against
the potential massive errors will soon lead to paramount energy overheads not sus-
tainable by future systems, thus conflicting with the other major challenge, energy
dissipation.

Power management techniques such as supply voltage scaling, power gating,
multiple-supply (Vpp), and threshold (Vry) voltage schemes have tried to limit the
energy dissipation up to now. Among them, the by far most effective energy reduction
technique is the reduction of the supply voltage while compensating for the perfor-
mance loss with additional hardware resources [8]. In extreme cases, this strategy
has been applied up to the point where circuits operate below the threshold voltage of
their transistors (i.e., in their “almost-off” state). Unfortunately, voltage scaling may
reduce power consumption significantly but increases the mean of the path delay dis-
tribution, as well as its variance, thus worsening the effect of parametric variations
and making the circuits even more prone to erroneous and unpredictable behav-
ior. Hence, in turn, even more protection and pessimistic assumptions are required
to counteract the effects leading to a vicious circle between energy efficiency and
reliability that ultimately diminishes the returns from technology scaling [16].

13.4 Beyond Pessimistic Variation-Aware Design

Triggered by the deadlock between reliability and energy reduction techniques,
researchers have tried to overcome the conventional pessimistic measures apply-
ing techniques at the circuit/architecture that could allow aggressive voltage scaling
while tolerating errors induced by violating safety margins [8, 17]. One of the first
attempts was Razor, a processor design, which is based on dynamic detection and
correction of timing failures of the critical paths due to below-nominal supply volt-
age [18]. The key idea is to tune supply voltage by monitoring the error rate during
operation using shadow latches controlled by delayed clocks. By comparing the val-
ues latched by the main flip-flop and the shadow latch, an error condition could be
detected, and the value of the shadow latch which is guaranteed to be correct is
then used to correct the failure. Average energy gains of up to 38% for a series of
SPEC2000 benchmarks were reported. However, main limitation of such a technique
is the performance penalty that might incur in case of frequent failures, especially
under low voltages, hindering their applicability to parallel data paths and demanding
signal processing applications.

An experimental processor from Intel places tunable replica circuits and employs
error-detection sequential [19] within the critical paths of the pipeline stages for
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detecting dynamic variations. Once a timing error is detected, the core prevents
the errant instruction from corrupting the architectural state and initially flushes the
pipeline to resolve any complex bypass register issues. To ensure error recovery,
the core supports instruction replay at half frequency and multiple-issue instruction
replay at the same frequency. A similar approach was also applied in [20].

Researchers have only recently started to venture in new error-resilient paradigms
that relax the strict enforcement of precise hardware functionality, trading off reliabil-
ity and quality of service/results (QoS) for lowering voltage by exploiting the inherent
error resiliency of many algorithms [8, 21]. Main drive for such a paradigm shift is
the fact that many algorithms are often statistical and iterative implying that errors
can easily get averaged out and successive iterations may even correct previously
introduced errors imparting them with a self-healing nature. Works at different layers
including the circuits, processors, memories, and programming frameworks [22-28]
have tried to take advantage of the inherent error resiliency but such approaches are
still targeting specific applications and cannot be generalized especially in server
environments where workloads vary significantly.

Researchers have also tried to improve the fault tolerance of system software.
Gu et al. [21] use fault injection to characterize the behavior of the Linux kernel in
the presence of faults. The authors in [29] investigate mechanisms to heal the OS
in the presence of faults, without rebooting and destroying the state of—potentially
unharmed—applications. In the context of Hypervisors, FT-Xen [30] routes all writes
to mutable state through a single core which is considered reliable. However, this
requires extensive Hypervisor modifications, unless the Hypervisor is inherently
nonsymmetric.

Several recent efforts have tried to improve the fault tolerance of a data center by
developing techniques to detect and predict the failures that may occur in a cloud
datacenter. These techniques [31-34] generally leverage machine learning or statisti-
cal analysis techniques to process the log data generated from the physical or virtual
servers to understand the causes of the past failures and use this information to detect
and predict future failures in real-time. A failure prediction method is proposed in
[25], for instance, for cloud data centers that use the pattern of the system log mes-
sages to predict a failure by classifying the messages by their similarities in real-time.
All these, and similar other, techniques are independent of the cloud middleware and
are not integrated with the latest available popular resource management frameworks
such as OpenStack.

13.5 UniServer Approach—Operation at Extended
Margins

As discussed above, recent works have tried to overcome the power and performance
overheads imposed by the traditional pessimistic design paradigm but very few of
them have been applied in the context of a server. In this section, a new paradigm
called UniServer [42, 43] is being described.
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Figure 13.1, depicts the different layers of the UniServer ecosystem. The most
fundamental idea of the project lies on the hypothesis that each hardware component
(i.e., core, cache, and DRAM) may have intrinsically different capabilities in terms of
energy, performance, and reliability. Starting from the low layers, we develop tech-
niques that aim at revealing new Extended Operating Points (EOP) for each hardware
component based on the component’s true capabilities. This is achieved by stress test-
ing the hardware components during a pre-deployment phase under different points
using various stress kernels. During deployment, a HealthLog daemon is monitor-
ing the health status of the hardware under any used voltage/frequency/refresh rate
(V-F-R) point and informs the system software by propagating information vec-
tors about the performance, power, temperature, and any incurred errors. Moreover,
another Linux daemon, the StressLog, is responsible for periodic offline, on-demand
stress testing of the hardware components and for producing an output vector con-
taining the new safe system V-F-R margins that will be suggested to the software (i.e.,
Hypervisor) for future use. It also produces log files recording errors (correctable
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or uncorrectable), system configuration values, sensor readings, and performance
counters. Using the information provided by the HealthLog and StressLog the Pre-
dictor develops probability failure models and tries to predict the hardware behavior
under any operating point and eventually helping the system software to decide on
the optimum configuration.

The UniServer paradigm addresses a wide range of use cases, ranging from
deployments in remote locations close to the end users to deployments in cloud
data centers. To facilitate such diverse use cases, the UniServer platform must be
equipped with a complete software stack that can efficiently manage any compute
and storage resources by offering easy installation, migration, and replication of
tasks, either at the node or server-rack level. To this end, state-of-the-art software
packages for virtualization (Hypervisor) and resource management (OpenStack) are
being adopted. Such packages, apart from managing the virtual machines (VMs) at
the node level (Hypervisor) and the resources at a rack/data center level (OpenStack),
they are also being enhanced for optimizing the system operation and the available
resources by fine-tuning the extended V-F-R points. In particular, the Hypervisor
will aim at limiting the effects of the potential faults to higher software layers by
reconfiguring the system to operate within safe margins and isolating problematic
processing and memory resources that affect the VMs. This is achieved by utiliz-
ing the information delivered by the HealthLog/StressLog/Predictor daemons and
developing a new set of configuration properties. The optimization of operations at
the EOP in UniServer is guided by the system requirements of the end-user for each
VM, which are typically communicated to the Cloud provider through Service Level
Agreements (SLAs). These workload-specific requirements reflect the key metrics
of interest based on which OpenStack manages the nodes that constitute any data
center. Note that in the UniServer paradigm an additional node reliability metric is
added to the traditional metrics of interest, which are node availability, utilization,
and energy usage. Altogether, these metrics will help in system optimization. The
system optimization will be also assisted by developing a tool for estimating the
potential TCO gains that can be achieved by various configuration properties of the
platform and deployments on Cloud or Edge environments.

The exposure of new EOP, which if not used carefully may result in system failure,
entails new security risks. The UniServer concept identifies potential security threats
(i.e., side channel attacks) that might be caused to microservers and develop low-cost
countermeasures against them. The main chassis of UniServer is a state-of-the-art
64-bit ARM based Server-on-Chip on which the developed technologies are ported.
However, the analysis and developed technologies will not be tied to a particular
platform and special consideration will be given to enable their seamless integration
with other servers.
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13.5.1 Exposing Margins and Monitoring Hardware
Behavior

To reveal optimistic margins, there is series of tests that are planned before and
after the server deployment. First, at the pre-deployment stage, the system goes
through a batch of stress tests to determine the more efficient but safe per-component
margins. Second, at normal operation in the field, a daemon is constantly recording
any possible errors (even if correctable) to fine-tune the margins after deployment.
If the number of errors rises above a certain threshold a new stress-test cycle may
be triggered to determine new efficient safe margins. This is useful to better adapt to
the workloads and also to the aging of the system. Third, during runtime, a predictor
daemon is running to observe different metrics and advise the Hypervisor on possible
execution modes (e.g., high-performance or low-power).

13.5.1.1 Revealing the Margins Within On-Board Components

Heterogeneity exists among cores located on the same chip, DRAM and cache mem-
ory banks. Each resource may perform better or worse than others but certainly not
as any other similar resource on the board. In the UniServer paradigm, each core
and memory bank is considered and characterized individually. For example, for
each cache memory bank the minimum voltage that allows correct operation can be
revealed. This information could be exploited by software to achieve better energy
efficiency without compromising reliability.

13.5.1.2 Stress-Test Development

First of all, the underlying cores and memories will be stressed using diagnostic
viruses. Genetic algorithms for generating these viruses are being used. These viruses
cause maximum voltage noise, power consumption, and error rates. The viruses will
represent a pathogenic worst-case scenario that is unlikely to be encountered in real-
life workloads. Safety margins are more pessimistic than these worst-case viruses,
therefore these stress tests will reveal initial EOP. In addition, real-life workloads
will probably allow even more efficient margins since they produce significantly less
voltage noise, power consumption, and error rates compared to stress viruses.

13.5.1.3 HealthLog Daemon

Operating outside the nominal values may introduce hardware errors during the
system’s lifetime. Thus, there is a need for a runtime mechanism that will monitor
the system and report errors occurring during up-time. Such mechanisms already
exist for different platforms [ref MCELOG] [ref LINARO] but their functionality
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Fig. 13.2 HealthLog monitor

is limited on logging of the hardware events. The UniServer paradigm implies a
specific monitoring mechanism that will react to hardware events and offer additional
information of the system state. The mechanism which uses extended error and
system monitoring capabilities, including various sensors and performance counters,
is called the HealthL.og monitor [47].

The HealthLog monitor will interact and exchange information (Fig. 13.2) with
higher system layers (e.g., the Predictor and the Hypervisor) and it will also offer
several logging options, such as different log levels and multiple logging formats,
varying from raw text to XML and database compatible output. The HealthLog
monitor will provide two types of services: (a) Event-driven services, where it will
collect information based on event occurrences in the system (e.g., errors) and (b)
On-demand services, where the monitor will respond to requests from higher layers
for specific information.

The operation of HealthLog is required to initiate prevention and recovery proce-
dures, and thus it must not introduce unnecessary delays and should be lightweight,
without causing any additional system overhead. For this reason, HealthL.og mon-
itor offers configuration of event priorities and the optional capability of operating
in kernel space, to further reduce the reaction time on critical errors. The extended
features of HealthLog are still operated in user space and the module operation is
limited to decode hardware errors and notify the hypervisor, in the case of critical
eITors.



13 Improving the Energy Efficiency by Exceeding ... 249

In user space, HealthLog daemon can record error statistics, measure event rates
and count their occurrences. Additionally, it offers the capability of extending list of
events, introducing conditional events (or condition-met events). These events are a
combination of counters and a described condition. For instance, a new conditional
event can be “if L2-correctable errors are more than 10”°. When the condition is met,
depending on the current configuration, it will be logged and a process interested for
this event can be notified.

HealthLog reacts to the event occurrences depending on its current configuration,
which is described in the HealthLog policy. Every process can request logging or
notification of events by supplying its own policy file on HealthLog daemon. The
daemon will log the occurrence of events if at least one of the applied policies (includ-
ing the default) has requested logging of that particular event. Similarly, HealthL.og
will notify the processes that requested a notification for an event.

The extended features and flexibility of HealthLog monitor can be used for both
hardware characterization and fault resilient software operation. The monitor can be
programmed accordingly to identify possible symptoms, which may not be neces-
sarily errors and react by notifying the hypervisor about a possible upcoming failure.

13.5.1.4 StressLog Daemon

The UniServer paradigm implies changing the nominal V-F-R values to reduce the
power consumption of each server in the system. These new values may need to
be updated several times over the lifetime of a server due to the aging effects of the
machine or unexpected errors observed. Therefore, a mechanism is needed to produce
new nominal values that will still guarantee the safe operations of the server. This
mechanism will stress the machine using predefined applications and compute new
safe operating V-F-R margins. We call this mechanism the StressLog monitor. The
StressLog monitor will be spawned either periodically during a machines lifetime
(e.g., every 2-3months) or will be triggered by higher system layers in the case
of erratic or anomalous machine behavior. The machine being tested will be taken
offline and as soon as the monitor receives the input stress target parameters from
the higher system layers, it will initiate the stress test scenarios. The StressLog
monitor will also include a workload suite, consisting of different benchmarks and
kernels that either represent real-life applications or are hand-coded to stress-specific
components of the system. During a stress test, the HealthLog monitor will run in
parallel to record system events (errors, system values, sensors, and performance
counters). The StressLog monitor will take the output of the HealthLog and will
wrap the needed information (defined in the stress target parameters) into a vector
to be passed to the higher system layers.
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13.5.1.5 Predictor

In order to advise the system regarding the best V-F-R mode depending on the current
workload and runtime characteristics of the system, we will develop a machine learn-
ing predictor that interacts with the HealthLog and StressLog monitors to provide
advice to the Hypervisor for choosing the desired operation mode.

13.5.2 Managing Operation at Extended Margins at System
Software

13.5.2.1 Virtualization

One of the major breakthroughs in the UniServer ecosystem is the ability to explore
and allow operation when possible at EOP. In fact, such points may dynamically
change depending on the workload, variations of environmental conditions, chip
aging, etc., and thus the system should be able to decide on the best energy-efficient
configuration parameters in a fast and reliable way. At the same time, operating so
close to the points of failure requires mechanisms to deal with potential, inadvertently
introduced faults. UniServer follows a Hypervisor-based approach based on KVM
to leverage all benefits of virtualization, such as easier deployment, administration,
replication, and migration which are necessary for the targeted data centers at the
Edge of the Cloud.

In the UniServer paradigm, the Hypervisor has additional roles. It is respon-
sible for creating an appropriate execution environment for VMs by manipulating
the power/performance/reliability trade-offs in an educated and safe manner. Specifi-
cally, it sets the system at a just-right configuration, which reduces the power footprint
of each node by eliminating unnecessary hardware guard-bands, without introduc-
ing negative effects on the services running within the VMs. The best configuration
depends on a number of different parameters, including the characteristics of appli-
cation software, the capabilities of the specific hardware parts at the specific time
and under the specific environmental conditions, as well as the QoS requirements
introduced by the cloud management framework (OpenStack).

Despite applying sophisticated configuration policies within the limits specified
by the StressLog, sporadic errors may still inadvertently occur due to the elimination
of guard bands. The Hypervisor needs to offer VMs a reliable virtual execution
environment on top of potentially unreliable hardware. In other words, it needs to
transparently mask errors from upper software layers. At the same time, it needs to
protect the whole system from catastrophic failures. Being the lowest level of system
software, the Hypervisor itself needs to be resilient to errors. Beyond selecting a
realistic hardware configuration, the Hypervisor isolates problematic processing and
memory resources experiencing high error rates, as reported by the HealthLog. This
is exactly one of the main aims at the Hypervisor layer and probably less complex
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than the upper software layers. In particular, the Hypervisor will be enhanced with
mechanisms to transparently mask errors from upper software layers, and protect the
whole system from catastrophic failures while choosing the right EOP for any given
condition/user requirement.

13.5.2.2 Resource Management—OpenStack

The next layer of software is the cloud computing platform. OpenStack [30] makes an
ideal candidate for this layer as it is a widely used open source middleware for cloud
setups, and it pairs well with the popular enterprise and open source technologies.
Our extended version of OpenStack includes support for monitoring VMs and deter-
mining their dynamically changing characteristics and virtual resource utilization at
a finer granularity than the existing state-of-the-art. This resource monitoring infor-
mation will be exploited to design and develop new scheduling policies, as well as
to assess the susceptibility of VMs to experience catastrophic errors due to hardware
faults. The new scheduling policies will also focus on incurring minimal overhead
and being non-intrusive in real-world scenarios where OpenStack would manage
streams of incoming and terminating VMs. Developing such an error-resilient soft-
ware stack will not only help to avoid system crashes even at EOP but will also help in
characterizing and exploring the server operation at aggressive V-F-R scaling points
by exploiting the characteristics of real world workloads. Furthermore, by porting
the OpenStack on a micro-server will enable resource management capabilities from
classical Cloud data centers at the Edge.

13.6 Potential Impact—Design Time Characterization

In this section, the potential impact in relaxing the voltage and refresh rate in CPUs
and DRAMs as well as the efforts in estimating the impact of IR drop is presented.

13.6.1 Characterization of CPUs

The initial phase of the UniServer project is focused on revealing the margins in volt-
age an frequency in CPUs. To this end, an experimental evaluation was performed on
the X-Gene 2 platform using an automated framework to accelerate the characteriza-
tion process and provide reliable and detailed results [44—46]. The primary goals of
the automated framework are (1) to identify the target system’s limits when it oper-
ates at scaled voltage and frequency conditions, and (2) to record/log the effects of a
program’s execution under these conditions. The framework provides the following
features:
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Fig. 13.3 Framework layout

e compares the outcome of the program with the correct output of the program
when the system operates in nominal conditions to record Silent Data Corruptions
(SDCs),

e monitors the exposed corrected and uncorrected errors from the hardware plat-
form’s error reporting mechanisms,

e recognizes when the system is unresponsive to restore it automatically,

e monitors system failures (crash reports, kernel hangs, etc.),

e determines the safe, unsafe, and non-operating voltage regions for each application

for all frequencies, and

performs massive repeated executions of the same configuration.

The automated framework (outlined in Fig. 13.3) is easily configurable by the user
and can be embedded to any Linux-based system, with similar voltage and frequency
regulation capabilities.

To completely automate the characterization process, and due to the frequent and
unavoidable system crashes that occur when the system operates in reduced voltage
levels, we set up a Raspberry Pi board connected externally to the X-Gene 2 board
which behaves as a watchdog. The Raspberry is physically connected to both the
Serial Port and the Power and Reset buttons of the system board to enable physical
access to the system.

Below, we present the challenges that were taken into consideration for a solid
development of such a framework.



13 Improving the Energy Efficiency by Exceeding ... 253

Safe Data Collection. Given that a system operating beyond nominal conditions
often has unexpected behaviors (e.g., file system driver failures), there is the need to
correctly identify and store all the essential information in log files (to be subsequently
parsed and analyzed). The automated framework was developed in such a way to
collect and store safely all the necessary information about the experiments.

Failure Recognition. Another challenge is to recognize and distinguish the system
and program crashes or hangs. This is a very important feature to easily identify and
classify the final results, with the most possible distinct information concerning the
characterization.

Reliable Cores Setup. This means that the cores, where the benchmark runs, must
be isolated and unaffected from the other active processes of the kernel in order to
capture only the effects of the desired benchmark.

Iterative Execution. The nondeterministic behavior of the characterization results
due to several microarchitectural features making it necessary to repeat the exper-
iments multiple times with the same configuration to eliminate the probability of
misleading results.

In the following subsections, each of these functionalities grouped in the three
distinct phases (i.e., Initialization, Execution, and Parsing) is discussed in detail.

13.6.1.1 [Initialization Phase

During the initialization phase, the user can declare a benchmark list with any input
dataset to run in any desirable characterization setup. The characterization setup
includes the voltage and frequency (V/F) values under which the experiment will
take place and the cores where the benchmark will be run; this can be an individual
core, a pair of cores, or all of the available eight cores in the microprocessor.

This phase is in charge of setting the voltage and frequency ranges, the initial
voltage and frequency values, with which the characterization begins, and to prepare
the benchmarks—their required files, inputs, outputs, as well as the directory tree
where the necessary logs will be stored. This phase is performed at the beginning
of the characterization and each time the system is restored by the Raspberry (for
example, after a system crash) in order to proceed to the next run until the entire
Execution Phase finishes. Each time the system is restored, this phase restores the
initial user’s desired setup and recognizes where and when the characterization has
been previously stopped.

The benchmark must run in an “as bare as possible” system without the interfer-
ence of any other running process. Therefore, reliable cores setup is twofold—first,
it recognizes these cores or group of cores that are not currently under characteriza-
tion, and migrates all currently running processes (except for the benchmark) to a
completely different core. Second, given that all the PMDs in the studied system are
in the same power domain, they always have the same voltage value. On the other
hand, each individual PMD can have different frequency, so all other cores are set to
the minimum available frequency.
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13.6.1.2 Execution Phase

After the initialization phase, the framework enters the Execution Phase, in which
all runs take place. The runs are executed according to user’s configuration, while
the framework reduces the voltage with a step defined by the user in the initialization
phase. For each run, the framework collects and stores the necessary logs at a safe
place externally to the system under characterization, which will be then used by the
parsing phase.

The logged information includes: the output of the benchmark at each execution,
the corrected and uncorrected errors (if any) collected by the Linux EDAC Driver, as
well as the errors’ localization (L1 or L2 cache, DRAM, etc.), and several failures,
such as benchmark crash, kernel hangs, and system unresponsiveness. The framework
can distinguish these types of failures and keep logging about them to be parsed later
by the parsing phase. Benchmark crashes can be distinguished by monitoring the
benchmark’s exit status. On the other hand, to identify the kernel hangs and system
unresponsiveness, during this phase the framework notifies the Raspberry when the
execution is about to start and also when the execution finishes.

In the meantime, the Raspberry starts pinging the system to check its responsive-
ness. If the Raspberry does not receive a completion notification (hang) in the given
time (we defined as timeout condition a 2 times the normal execution time of the
benchmark) or the X-Gene 2 turns completely unresponsive (ping is not responding),
the Raspberry sends a signal to the Power Off button on the board, and the system
resets. After that, the Raspberry is also responsible to check when the system is up
again, and sends a signal to restart the experiments. These decisions contribute to the
Failure Recognition challenge. We also ensure that any logging information will be
stored correctly and no information will be lost or changed in case of any unstable
system conditions (Safe Data Collection).

13.6.1.3 Parsing Phase

In the last step of our framework, all the log files that are stored during the Execu-
tion Phase are parsed in order to provide a fine-grained classification of the effects
observed for each characterization run. Note that, each run is correlated to a specific
benchmark and characterization setup. The categories that are used for our classifi-
cation are summarized in Table 13.1, but the parser can be easily extended according
to the user’s needs. For instance, the parser can also report the exact location that the
correctable errors occurred (e.g., the cache level, the memory, etc.) using the logging
information provided by the Execution Phase.

Note that, each characterization run can manifest multiple effects. The charac-
terization runs with the same configuration setup of different campaigns may also
have different effects with different severity. For instance, let us assume two runs
with the same characterization setup of two different campaigns. After the parsing,
the first run finally revealed some CEs, and the second run was classified as SDC.
To quantify the criticality of the effects of different experimental runs of different
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Table 13.1 Experimental effect categorization

Effect Description

NO (Normal operation) The benchmark was successfully completed
without any indications of failure

SDC (Silent data corruption) The benchmark was successfully completed,
but a mismatch between the program output
and the correct output was observed

CE (Corrected error) Errors were detected and corrected by the
hardware

UE (Uncorrected error) Errors were detected, but not corrected by the
hardware.

AC (Application crash) The application process was not terminated

normally (the exit value of the process was
different than zero)

SC (System crash) The system was unresponsive; meaning that the
X-Gene 2 is not responding to pings or the
timeout limit was reached

Table 13.2 Weights used in our experiments

Weight Value
Wsc 16
Wac 8
Wspc 4
WuE 2
WcE 1
Wyo 0

campaigns with the same setup, we define the “severity function” S,, where v is the
voltage value, as presented below:

Sy = Wspc - SDC/N + WegCE/N + Wyg - UE/N + Wyc -AC/N + Wge - SC/N

In this function, the parameters SDC, CE, UE, AC and SC can take the values from 0
to N (N is the number of runs at each voltage level), and represent the times that this
effect appears to these runs. Parameters Wspe, Weg, Wyg, Wae and Wy represent
“weights” that can be set to characterize the severity of each effect of Table 13.1. The
higher the weight, the more critical the effect is considered by our function. For the
purpose of this chapter, we defined the values presented in Table 13.2 as values for
our severity function (any values for the weights can be used).

In this experimental research, two different benchmarks are used: Linpack, which
is a widely-used high-performance benchmark [35] and Ammer from the SPEC
CPU2006 benchmark suite [36]. Both of them ran on a single core, while the remain-
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Fig. 13.4 Cores characterization

ing cores are reliable and each campaign were ran three times. Figure 13.4 presents
the three campaigns for the Linpack and hmmer benchmark (1st, 2nd, 3rd), respec-
tively, in the case that are executed in each individual core running at 2.4 GHz, while
the rest of the cores operate on the reliable cores setup. In both benchmarks, we can
notice the three regions of operation according to the collected results. The regions
are given as follows:

e Safe region (green): NO (normal operation) without SDCs, errors or crashes.

e Unsafe region (yellow): abnormal behavior (SDC, CE, UE, AC) but not a system
crash.

e Crash region (grey): SC (system crash).

Itis clear that there is a significant variation among the three runs and significant core-
to-core static variation for the same benchmark. From these results, it follows that
cores 4 and 5 of the particular chip were used more robust than the others. Moreover,
it is important to notice the width of the Safe region in the two benchmarks that is
up to 11.2% lower than the nominal voltage value (980 mV). This reduction of the
voltage from the nominal value corresponds to power gains up to more than 21%.
Finally, the width of the Safe region ranges from O mV up to 40 mV. This illustrates
that with the development of appropriate mitigation techniques the power gain can
reach the 28.3%.

Finally, for the same characterization runs we used the severity function before to
present the scaling of the effects and their severity in the reduced voltage margins. In
Fig. 13.5, we can notice that the lighter the color, the more stable and reliable is the
system. While reducing the voltage margins, we observe that the instability increases
(the color becomes darker), until the darkest color, which indicates that the system
cannot operate in such voltage margins.
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13.6.2 IR-Drop Analysis

As we discussed, a significant percentage of the margins adopted in voltage or fre-
quency is attributed to dynamic variations such as IR-drop, thus a significant effort
in UniServer is spent on evaluating it. In particular, a two-pronged strategy for direct
analysis and measurement of power supply noise is developed. For the purposes
of analysis, the ARM Juno platform was chosen for several compelling reasons.
First, the Juno platform integrates a high-performance (excess of 1.2 GHz) dual-core
ARM Cortex-AS57 cluster. Second, the Juno platform is a dual-core Cortex-A57 clus-
ter. System-architecturally, this is very similar to other high-performance multi-core
ARM systems. Thus, the software interactions that we can reveal in our Juno analysis
should also hold true for these high-performance platforms as well. We particularly
highlight the impact of multi-core execution and power gating on supply voltage
noise.

The third compelling reason for the choice of the Juno platform is the availabil-
ity of an on-chip Digital Storage Oscilloscope (OC-DSO) [10] that was designed
and integrated for direct snooping of on-chip voltage noise on the Cortex-A57 clus-
ter. Our knowledge of this voltage monitoring peripheral enables us to develop a
comprehensive analysis framework.

In the following subsection, we describe our analysis setup for the Juno platform
and some of our measurement results.

13.6.2.1 Juno PDN Simulation Framework

We designed and developed a simulation methodology to analyze the impact of supply
noise. Our simulation methodology enables us to execute industrial workloads which
we then compare against direct measurement results to validate the model.

Figure 13.6 illustrates the power delivery network model [37]. The hybrid model
incorporates a combination of lumped elements and distributed network models to
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Fig. 13.6 PDN simulation model consisting of lumped and distributed parameters

efficiently model system behavior across a wide frequency range. Accurate power
delivery network (PDN) behavior at low-frequency requires a closed-loop, small-
signal model of the VRM, with a voltage-feedback sense-point, and an appropriate
feedback-compensation model. Instead, we represent the VRM by an open-loop,
small-signal lumped circuit model. Such an approach retains PDN accuracy at the
mid- and high-frequency ranges (100 kHz-100 MHz) without increasing overall
simulation and modeling complexity.

We extract a lumped chip power model (CPM) for the A57 compute cluster using
Apache Redhawk [38]. The lumped model of the die consists of a current source that
represents switching transistors. Non-switching transistors act as local decoupling
capacitors that provide instantaneous current demands. The power grid resistance
(Rdie) is also modeled in the power model for the die. Resonance interactions between
the die and the rest of the PDN network occur at frequencies in the range around 100
MHz, where a lumped circuit model is sufficient for accurate modeling of the die.

13.6.2.2 PDN Simulation Results

Figure 13.7 shows the input impedance of the PDN as a function of frequency. The
impedance is represented in the db-Ohm scale (1 & =0 dB) in order to highlight key
attributes of the PDN that may not be seen on the linear scale. The dB scale helps to
highlight the relative difference in magnitude, i.e., every 6 dB reduction is equivalent
to a magnitude difference of 50%.

The VRM (voltage regulator module), PCB (printed circuit board) decoupling
capacitors and the die capacitance form three parallel impedance branches of the
overall PDN. At low frequencies (<1 kHz), the path of least impedance is through
the VRM. The series inductor (2.2 wH) in the switching regulator circuit dominates
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Fig. 13.7 PDN frequency domain simulation results

overall VRM impedance (Zygy ). The inductor and the bulk-capacitor (400 wF) at
the VRM output form a LC-tank circuit that resonates at 4.5 kHz. This represents
the third-order resonance frequency of the system PDN.

The impedance of the VRM bulk-capacitor (Zgyx) is ultimately limited by its
ESL, which causes inductive behavior beyond the self-resonance frequency of 750
kHz. The PCB decap network consists of eight capacitors of value 10 wF each and an
additional eight capacitors of value 220 nF. The set of 10 wF capacitors have a self-
resonance frequency of 1 MHz. Beyond this, their frequency response is dominated
by the parasitic inductance loop formed by the series connection of the decap ESL
and the PCB trace inductance connecting the capacitor to the die bumps. Looking
in from the decap pads as a single lumped port, this parasitic loop inductance was
measured to be 143 pH (in simulation) for the set of eight 10 wF capacitors.

The parasitic inductance of the PCB decaps is dominated by their connection to
the PCB. The ESL of individual capacitors is ~400 pH, whereas the PCB connections
from the decaps to the package add an effective inductance of 1.2 wH. Thus, the ESL
of each capacitor element affects the overall inductance weakly, which is dominated
as such by PCB parasitics.

13.6.2.3 Measurement Results on the Juno PDN

Figure 13.8 shows our on-chip measurement framework. A high-bandwidth on-chip
digital storage oscilloscope (OC-DSO) snoops the supply rails of the Cortex-AS7
cluster. The OC-DSO runs continuously in real-time, logging data and capturing
waveforms on trigger events. Event counter and tide-mark registers track the size and
frequency of voltage transients. For voltage transients of interest, threshold and gradi-
ent triggers can initiate waveform capture of up to 2 K points into the internal SRAM
trace buffer. A decimation block allows flexible adaptation of the bandwidth/sample
rate to allow measurement of low-frequency transients.
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The on-chip measurement setup enables high-bandwidth probing of the internal
supply rails of the A57. Accuracy of the time-domain measurement is limited by
the minimum resolution of the internal ADC and the internal noise generated by
the clocked transistors. Therefore, the minimum voltage droop that can be measured
using this technique is in the range between 5 and 10 mV. The limitations on the
maximum current draw of the SCL block and the accuracy of the internal ADC limit
the minimum impedance magnitudes (~50 m €2) that can be measured using this
technique.

13.6.2.4 Worst-Case Resonant Code Generation

Manually creating workloads that can trigger worst-case resonances in the system is
difficult due to the complexity of the underlying microarchitecture, especially in out-
of-order cores, such as the ARM AS57. This issue was circumvented by automatically
generating worst-case workloads using a genetic-algorithm-based framework that is
agnostic to the processor microarchitecture.

In this experimental study, the genetic algorithm setup outlined in Sect. 13.6.1.2.
to develop resonant workloads for the Juno platform was used. An initial seed popu-
lation of instructions is generated from the packaged vectors delivered with the A57
processor IP. The algorithm uses voltage noise measurements, from the on-chip oscil-
loscope circuitry as the optimization objective function. Selection criteria, based on
the droop magnitude, prune the workload population by selecting the ones causing the
maximum voltage droops. These serve as “parents” which are then paired and mutated
to create the next generation of workloads. The process is iterated until the increase
in voltage droop across succeeding generations saturates. The fittest instruction in the
final iteration is chosen as the worst-case workload (the “GA_Max_Droop” work-
load). This approach allows flexibility since different measurement variables (such
as average current consumption) can also be chosen as the optimization objectives.
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Genetic-algorithm-based approaches often converge on local minima and may not
generate the global minima. Therefore, the output of the algorithm is evaluated in
terms of its efficacy in exciting the worst-case resonance. Figure 13.9 shows the simu-
lated current waveform (I_VDD) for two successive loops of the “GA_Max_Droop”
workload. The current waveform appears discontinuous due to an ideal PDN being
used, with infinite current bandwidth. Each loop is 67 ns in duration when the pro-
cessor is operated at the clock frequency of 1.27 GHz. This is close to the maximum
frequency of operation for the compute cluster, as measured in silicon.

Figure 13.10 shows how the “gaDIDT” workload (the GA generated voltage noise
virus) compares to other workloads in terms of voltage noise and Vmin (minimum
operational voltage for a given frequency). Measurements from single- and dual-core,
the “gaDIDT” workload (the GA-generated voltage noise virus) compares to other
workloads in terms of voltage noise and Vmin (minimum operational voltage for a
given frequency). Measurements from single- and dual-core runs are shown. On dual-
core runs both voltage noise and Vmin are higher. The voltage noise virus generates
2x more voltage droop than conventional workloads. Also, the Vmin measurements
suggest that the operational voltage for 1.1 GHz frequency can be reduced by at least
6% for dual-core operation and by 10% for single-core operation.



262 L. Mukhanov et al.

13.6.3 Revealing DRAM Refresh-Rate Margins

The ever-increasing need for higher memory capacity is driving the aggressive scaling
of Dynamic Random-Access Memory (DRAM), which is an essential component
of all computing systems. However, the aggressive DRAM scaling is hampered by
the need of periodic refresh operations (triggered by the default Auto-Refresh (AR)
mechanism) to retain the stored data, the frequency of which is conventionally being
determined by the worst-case retention time of the most leaky cell. Such an approach
might help to achieve error-free storage but its viability is in doubt due to the large
waste of power and throughput that may incur reaching up to 25-40% and 15-30%
respectively, in future 32-64 GB densities [11, 12]. To address such an alarming
challenge, many recent studies have shown that the retention time of DRAM cells
varies a lot and most of the cells do not require as frequent refresh as the conventional
paradigm dictates [39]. The majority of the works have been evaluated on simulators
or on experimental setups based on FPGAs and not in a real server with a full system
software as planned in UniServer.

To this end, an experimental platform based on a dual-socket commodity server
was developed with each socket hosting an Intel Xeon E5-2650 (Sandy Bridge)
processor featuring an integrated memory controller (iMC) to control the DRAM
devices attached to the socket, specifically four 8 GB DDR3 DIMMs at 1600 MHz.
The iMC exposes a set of configuration registers to enable or disable refresh for the
entire DRAM. Following the fact that each iMC controls a single memory domain,
DRAMs attached to different CPU sockets can have the auto-refresh enabled or dis-
abled separately. In the developed dual-socket system depicted in Fig. 13.11, the first
memory domain is deemed reliable with the nominal refresh-rate applied, in which

Memory I Memory
Controller 1 Domain 1
Variably reliable
memory domain heap
Pmcessor e i ———————————— - - o - —
Reliable
memory domain stack
global
Memory I Memory code
Controller O Domain 0 Operating
System
HARDWARE SOFTWARE

Fig. 13.11 Experimental setup with different memory reliability domains
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the Operating System is allocated, while the second one is configured with relaxed
or no refresh. Such configuration can safeguard the kernel data that cannot tolerate
errors in the reliable domain for avoiding any catastrophic failures and execute the
application on the second memory domain [40].

Utilizing such an experimental setup in server room temperature (20-23 °C) and
using known memory test patterns [41], the Bit-Error Rate (BER) of 8 GB DIMMs
have been characterized by aggressively relaxing the refresh-rate from the conser-
vative 64 ms to 1 s and up to 30 s. The resulted Cumulative Distribution Function
(CDF) is depicted in Fig. 13.12 from which it is evident that as the refresh rate is
being relaxed the BER is increasing. An interesting observation is that the BER is
maintained below 10719 even for a refresh-rate less than 5 s, which is almost 78 times
less than the conventional refresh rate.

Apart from the rather rare and extremely pessimistic events and conditions that
such experiments may reveal another factor that could be exploited for further extend-
ing the refresh while potentially minimizing the BER are the implicit refreshes that
take place during each access. In fact, every DRAM access naturally opens the
accessed row and consequently restores the leaked charge in the capacitor of DRAM
cells, thus incurring an implicit refresh operation. Refresh-by-Access (RefA) can
be exploited to significantly relax the refresh rate while restricting the number of
manifested errors (see Fig. 13.12).

To understand such a concept, it is worth to consider a simple scenario as depicted
in Fig. 13.13 and assume that a running application triggers N, Memory Accesses
(MemA) to the r address in memory so that

MemA, = {MemAy,, ..., MemAy; .}

Clearly, the intervals between consecutive accesses to the same address can be cal-
culated as:

Aty = IMemAit1,r — IMemAi,r
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Fig. 13.13 Graphical representation of our approach where all time intervals between consecutive
memory accesses are being kept lower than a target time interval (target retention time)

If the maximum of all A¢; , is smaller than a target retention time Ty,¢., Of the DRAM
cells, i.e.,
maX(Ati,r) < Ttarger

then, all cells would be implicitly refreshed though the memory accesses. In this
case, the conventional AR can be relaxed up to Ty,¢.; While maintaining the actual
BER low, since no cell that has up to T, retention time will fail. In fact, the BER
will be bounded to a value lower than when we adopt AR of T4

BER (max(Ati,r)) = BERzarget

To showcase such an approach, an artificial benchmark was developed such that it
issues as many memory accesses as required for touching all the stored data iteratively
within intervals of 10-20 s. By doing so, it was essentially ensured that max(Ati, r) =
{10, 20} s in each case. The results are shown in Fig. 13.12 as crosses. An interesting
observation is that by ensuring that all memory access intervals are bound to a value,
then the resulting BER is equal to the one achieved by using AR with a more frequent
refresh. In particular, the first case resulted in a BER of 10~° that is equal to the one
achieved with AR of 8.6 s while the second case resulted in a BER of 2 x 1078 that
is equivalent to AR of 12 s. This means that we can relax the refresh by 16% or by
66% or even omit the AF and achieve the same BER.

13.6.3.1 Application to Stencil Algorithms

To evaluate the effectiveness of the above approach on real applications, the above
scheme to stencil algorithms, which are very popular in various high-performance
application, has been applied. Stencil-based algorithms are a class of iterative kernels.
In each sweep, the stencil updates all the elements of a n-dimensional grid using
neighboring elements in a fixed pattern called stencil. The naive implementation for
the stencil is by using nested loops for computing each sweep sequentially. Looping
implementation lack from poor cache performance.

We are using Pochoir stencil compiler, which is built on top of Cilk Plus multi-
thread extension and uses trapezoidal decompositions, which utilize the cache more
efficiently. The decomposition is breaking down the problem into smaller tasks that
are responsible for a part of the grid and the associated stencil for a number of
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sweeps. It decomposes the sweep domain when the number of sweeps is greater
than a threshold and recursively process the lower sub-trapezoids before the upper
ones or the base domain so that it ends up fitting to the size of the cache. The
compiler was modified to schedule the memory accesses to facilitate RefA. For the
proposed method, the interval between consecutive memory accesses should be con-
trolled. For this reason, borders are introduced. Every border height sweeps and
breaking down the sweep domain on the same sweep for all the grid, as shown in
Fig.13.14 with the dashed line. The border essentially does not allow to start any
consequent sweep without completing all the tasks in the current border height. We
can ensure that each element in the grid will be accessed during that parameter set of
p={pl, p2, ...} that determine accesses {MemA; ,}.

The time intervals between consecutive borders can be measured. As all ele-
ments are accessed at least once in each bordery,;gp;, €ach At; - is bound to be less
than the duration of computing all the tasks in the current borderye;gs:, Which is
denoted as interval Atpp.q.r. As shown previously, the max(At; ) will is than Atpeger.
Figure 13.14 shows also the Original implementation that would opportunistically
progress as many sweeps as possible, specifically after finishing task;.;, task;.,, and
task;.s, it will compute all the tasks up to the tasks., highlighted in grey.

In this experiment, bordery,;g; is set as a parameter to control the Atq,-. Lower-
ing the bordery;,;, Will reduce the required computation of each task and the Aty ge;-
The bordery;,;, must be carefully selected so that the BER resulted from the Atpo,ger
will be kept under the set threshold, BER,¢.;. Furthermore, tasks should not be
broken down to very small ones as there is a considerable performance overhead
caused by the function calls and by breaking the cache efficiency.

The order of the tasks which belong to the same border height is scheduled in
such a way as to ensure that tasks which are responsible for the same area of the grid
run consecutively and achieve the maximum performance efficiently under the same
constraints.

To evaluate the proposed approach, the Pochoir compiler was used for a range of
stencil-based algorithm which has different number of dimensions, grid size, data size
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Table 13.3 Benchmarks

Benchmark | Grid size Memory (GB) Execution time (s)
Min Max Min Max Min Max
Head-2D 18,000 30,000 9.3 24 38 96
Head-3D 780 1020 74 16.6 56 263
Life-2D 18,000 30,000 1.5 4 46 156
Artf-2D 18,000 30,000 6.2 16 37 98

of each element, and complexity of the stencil. Specifically, we have experimented
with the algorithms of Heat Dissipation (Heat) [17], Conways’s Game of Life (Life)
[17] and an artificial benchmark (Artf ), the characteristics of which are shown in
Table 13.3. The Artfis designed as a 3 x 3 kernel on two-dimensional grid which in
each sweep applies binary arithmetic and shifting between different elements so that
each bit-error will persist during the execution and be manifested once at the end
result.

The chosen algorithms are not resilient to errors, and thus even one error can have
catastrophic results since this error may propagate to neighboring elements. The
quality of the measured metric is estimated as the percentage of runs that completed
correctly. For further characterization and to be able to measure the number of bit-
errors, the Artfis used.

13.6.3.2 Experimental Results

(1) Artificial Benchmark: We start with the results obtained from Artf as it is pos-
sible to measure manifested errors. We are comparing the benchmark compiled
with the Original implementation of the Pochoir and our Proposed one. In our
experiments, we sweep the bordere;,, from 10 to 40 and the grid size from
18,000 to 30,000. The borderp;gn in the results of Fig.13.6 is chosen to be
20 so that the following constraints are met: (i) the maximum introduced per-
formance overhead is lower than 15% and (ii) the maximum Aty 4., iS below
2 s that corresponds to BER of 1070, The results are obtained after executing
Artf 1340 times while varying the grid size. The left plot of Fig. 13.15 compares
the percentage of the correct runs of the two implementations and the right plot
of Fig. 13.6 shows the average number of bit-errors occurred. We can observe
that given the constraints, our Proposed implementation outperforms retaining a
high percentage, over 95%, of correct runs across the range of grid sizes, while
the Original implementation rapidly decrease its quality.

(2) Application Benchmarks: Figs. 13.16 and 13.17 present the design space explo-
ration for the performance overhead and for the Azy,,4., of the benchmarks Heat-
2D and Heat-3D. The design space is populated from the results of runs with
variable bordery,;gs; and grid size. We are sweeping the bordery,;;,, for Heat-2D
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from 10 to 40 and for Heat-3D from 2 to 10. Respectively, we are sweeping
the grid size from 18,000 to 30,000 and from 900 to 1020. We observe that
the performance overhead is mainly affected by the bordery,;,s caused by the
disruption of cache locality and by the increased number of function calls while
having smaller tasks. Afp,qer is affected by both the bordery,i,;, and the grid
size, as the bordery,;gp, affects the number of stencil computations for each task
and the grid size affects the number of tasks that belong in each bordery;gn,. We
are using the design space to select the parameter values that minimize refresh
operations given different constraints such as maximum acceptable performance
overhead and the maximum Aty

Based on the performed design space exploration, we analyze three possible sce-

narios for better understanding the efficacy of our approach. We are selecting param-
eters to optimize: (i) for the minimum Atp,,4.- and consequently the lowest BER,

(i)

for the least performance overhead and (iii) for both those two previous criterion

together. So we are exploring the error characteristics for the three scenarios with
borderpeign, = {10, 40, 20}, equivalent max(Atpoer) = {1.5, 4.5, 2.4} seconds and
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max(overhead) = {38%, 5%, 12%}. We can see the results of 1968 runs in Fig. 13.18a,
which depicts the percentage of the runs that completed correctly.

We can observe that for the first and third scenario, the percentage of correct runs
remain over 90% for all the grid sizes, while for bordery,;o;; = 40, the percentage
decreases more rapidly. However, in each case, the results are better than the Original
implementation.

In Fig. 13.18b, we explore one setting for Heat-3D with parameter of borderyign
= 6 with equivalent max(A#p,.qer) = 8 s and max(overhead) = 44%.

For the selected range of grid sizes, the original implementation has no devastating
results even in the smaller grids, while the quality degrades slowly with our Proposed
implementation.
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13.6.3.3 Performance and Power Gains

Based on the above results, it is evident that there are cases where our approach can
relax or omit refresh with minor quality losses. If we omit the AR, we obviously help
to limit the AR overheads. As seen in Fig. 13.19, we can gain from 4.4% performance
in current technologies and up to 19% in future technologies and decrease the power
consumption of the memory system by 9.6-31%.

13.7 Conclusion

This Chapter discussed the variability challenges and their impact on energy effi-
ciency of servers. The basic ideas of the UniServer [43] paradigm were presented
which attempts to reduce hardware safety margins by utilizing representative stress
cases, constant hardware monitoring and predictive mechanisms. The complete
system stack approach includes a modified error-resilient Hypervisor and a cloud
resource management software. The results of the initial phase of the project indicate
the possible margins existing in the state-of-the art CPUs and DRAMs while revealing
the margins attributed to IR-drop. Efficient schemes are needed to ensure disruptive
operation by bullet-proofing the system software the development of which is the aim
of the second phase of the project. The developed technologies are integrated within
a 64-bit ARM-based microserver which aspires to drive Edge computing and turn
the opportunities in the emerging Big Data and IoT markets into smarter products.
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